-
公开(公告)号:CN114627381B
公开(公告)日:2024-09-24
申请号:CN202210426001.7
申请日:2022-04-21
Applicant: 南通大学
IPC: G06V20/10 , G06N3/0464 , G06N3/045 , G06N3/0895 , G06N3/084 , G06N3/096 , G06N3/042 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于改进半监督学习的电瓶车头盔识别方法,包含以下步骤:S1、通过相机拍摄各种场景下电瓶车驾驶员戴头盔的图片,制作电瓶车头盔数据集,并对数据进行增强;S2、使用Faster‑RCNN作为头盔识别模型,半监督学习的基本流程采用教师‑学生模型,训练头盔识别模型;S3、对半监督学习方法进行改进,并对改进后的模型进行训练;S4、使用训练好的学生模型进行电瓶车头盔识别。与现有电瓶车头盔识别方法相比,本发明提出改进的半监督学习方法,相比于传统的半监督学习模型,本发明的方法准确率更高,且不会增加推理时间。本发明的模型能够适应不同场景、不同天气下的电瓶车头盔检测,模型的实用性和泛化性更好。
-
公开(公告)号:CN114627381A
公开(公告)日:2022-06-14
申请号:CN202210426001.7
申请日:2022-04-21
Applicant: 南通大学
Abstract: 本发明公开了一种基于改进半监督学习的电瓶车头盔识别方法,包含以下步骤:S1、通过相机拍摄各种场景下电瓶车驾驶员戴头盔的图片,制作电瓶车头盔数据集,并对数据进行增强;S2、使用Faster‑RCNN作为头盔识别模型,半监督学习的基本流程采用教师‑学生模型,训练头盔识别模型;S3、对半监督学习方法进行改进,并对改进后的模型进行训练;S4、使用训练好的学生模型进行电瓶车头盔识别。与现有电瓶车头盔识别方法相比,本发明提出改进的半监督学习方法,相比于传统的半监督学习模型,本发明的方法准确率更高,且不会增加推理时间。本发明的模型能够适应不同场景、不同天气下的电瓶车头盔检测,模型的实用性和泛化性更好。
-