-
公开(公告)号:CN114627381B
公开(公告)日:2024-09-24
申请号:CN202210426001.7
申请日:2022-04-21
Applicant: 南通大学
IPC: G06V20/10 , G06N3/0464 , G06N3/045 , G06N3/0895 , G06N3/084 , G06N3/096 , G06N3/042 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种基于改进半监督学习的电瓶车头盔识别方法,包含以下步骤:S1、通过相机拍摄各种场景下电瓶车驾驶员戴头盔的图片,制作电瓶车头盔数据集,并对数据进行增强;S2、使用Faster‑RCNN作为头盔识别模型,半监督学习的基本流程采用教师‑学生模型,训练头盔识别模型;S3、对半监督学习方法进行改进,并对改进后的模型进行训练;S4、使用训练好的学生模型进行电瓶车头盔识别。与现有电瓶车头盔识别方法相比,本发明提出改进的半监督学习方法,相比于传统的半监督学习模型,本发明的方法准确率更高,且不会增加推理时间。本发明的模型能够适应不同场景、不同天气下的电瓶车头盔检测,模型的实用性和泛化性更好。
-
公开(公告)号:CN114627381A
公开(公告)日:2022-06-14
申请号:CN202210426001.7
申请日:2022-04-21
Applicant: 南通大学
Abstract: 本发明公开了一种基于改进半监督学习的电瓶车头盔识别方法,包含以下步骤:S1、通过相机拍摄各种场景下电瓶车驾驶员戴头盔的图片,制作电瓶车头盔数据集,并对数据进行增强;S2、使用Faster‑RCNN作为头盔识别模型,半监督学习的基本流程采用教师‑学生模型,训练头盔识别模型;S3、对半监督学习方法进行改进,并对改进后的模型进行训练;S4、使用训练好的学生模型进行电瓶车头盔识别。与现有电瓶车头盔识别方法相比,本发明提出改进的半监督学习方法,相比于传统的半监督学习模型,本发明的方法准确率更高,且不会增加推理时间。本发明的模型能够适应不同场景、不同天气下的电瓶车头盔检测,模型的实用性和泛化性更好。
-
公开(公告)号:CN113537393A
公开(公告)日:2021-10-22
申请号:CN202110907362.9
申请日:2021-08-09
Applicant: 南通大学
Abstract: 本发明公开了一种基于改进Transformer的黑暗场景三维人体姿态估计算法,包括以下步骤:制作黑暗场景下人体姿态数据集,并进行数据增强;训练二维人体姿态估计模型,并将经过处理后的图像首先进行二维人体姿态估计,得到人体关节点的二维坐标;将得到的二维关节点坐标组成特征序列作为改进Transformer的输入实现三维人体姿态估计;将训练好的模型部署到移动端设备。本发明在黑暗场景下具有准确率较高和实用性较好等优点。
-
-
公开(公告)号:CN113537393B
公开(公告)日:2023-08-22
申请号:CN202110907362.9
申请日:2021-08-09
Applicant: 南通大学
IPC: G06T17/00 , G06N3/0464 , G06N3/0455 , G06N3/08 , G06V10/44 , G06T7/20
Abstract: 本发明公开了一种基于改进Transformer的黑暗场景三维人体姿态估计算法,包括以下步骤:制作黑暗场景下人体姿态数据集,并进行数据增强;训练二维人体姿态估计模型,并将经过处理后的图像首先进行二维人体姿态估计,得到人体关节点的二维坐标;将得到的二维关节点坐标组成特征序列作为改进Transformer的输入实现三维人体姿态估计;将训练好的模型部署到移动端设备。本发明在黑暗场景下具有准确率较高和实用性较好等优点。
-
-
-
-