-
公开(公告)号:CN112966095A
公开(公告)日:2021-06-15
申请号:CN202110368686.X
申请日:2021-04-06
Applicant: 南通大学
IPC: G06F16/335 , G06F8/71
Abstract: 本发明提供一种基于JEAN的软件代码推荐方法,主要用于解决在软件开发中向开发人员推荐代码段的问题。包括如下步骤:S1、构建JEAN模型;S2、从GitHub上收集带有描述的java代码段数据集,并对其预处理用作训练集,用来训练JEAN模型;S3、构建代码库,使用JEAN模型中的代码嵌入表示模块将代码库中的所有代码段嵌入成代码向量;S4、开发人员进行在线搜索代码,输入查询后,JEAN模型中的描述嵌入表示模块将查询嵌入成查询向量;S5、使用余弦相似性计算查询向量和代码库中的所有代码向量之间的相似性,返回与查询向量最相关的向量的代码段。本发明能够有效地帮助软件开发人员根据自己的需求推荐合适的代码段,具有较高的精确率和效率。
-
公开(公告)号:CN112966095B
公开(公告)日:2022-09-06
申请号:CN202110368686.X
申请日:2021-04-06
Applicant: 南通大学
IPC: G06F16/335 , G06F8/71
Abstract: 本发明提供一种基于JEAN的软件代码推荐方法,主要用于解决在软件开发中向开发人员推荐代码段的问题。包括如下步骤:S1、构建JEAN模型;S2、从GitHub上收集带有描述的java代码段数据集,并对其预处理用作训练集,用来训练JEAN模型;S3、构建代码库,使用JEAN模型中的代码嵌入表示模块将代码库中的所有代码段嵌入成代码向量;S4、开发人员进行在线搜索代码,输入查询后,JEAN模型中的描述嵌入表示模块将查询嵌入成查询向量;S5、使用余弦相似性计算查询向量和代码库中的所有代码向量之间的相似性,返回与查询向量最相关的向量的代码段。本发明能够有效地帮助软件开发人员根据自己的需求推荐合适的代码段,具有较高的精确率和效率。
-
公开(公告)号:CN114647418A
公开(公告)日:2022-06-21
申请号:CN202210336803.9
申请日:2022-03-31
Applicant: 南通大学
Abstract: 本发明提供一种树序列化嵌入的软件代码推荐方法,主要用于解决开发过程中出现的代码功能实现问题,包括如下步骤:步骤1、通过解析抽象语法树AST分别将向量化的代码和注释嵌入到向量空间中并计算相似度,建立TCDEnn模型;步骤2、收集java代码,通过AST节点提取进行预处理构建训练集和测试集,用来训练和测试TCDEnn模型;步骤3、收集高质量的java代码,建立代码搜索库,开发人员输入描述查询代码搜素库,对搜索代码库中的AST向量与功能描述向量计算相似度,将相似度值最高的k个代码向量返回给开发人员。本发明可以通过直接描述功能需求的形式得到对应代码,有效节省开发时间,提高开发效率。
-
公开(公告)号:CN114821054A
公开(公告)日:2022-07-29
申请号:CN202210446165.6
申请日:2022-04-26
Applicant: 南通大学
Abstract: 本发明提供一种基于源码可视化的软件缺陷预测方法,包括如下步骤:S1、构建数据集DATASET;S2、构建源码像素节点集Vdata;S3、构建阿尔法合成三原色组合方法Vcode;S4、构建基于VPE方法的深度学习网络;S5、构建基于源码可视化的软件缺陷预测方法。本发明缩短跨项目间数据分布差异,提高深度学习模型输入数据集的有效性,能够大幅辅助软件开发人员使用该预测模型来减少软件开发过程中的缺陷,具有较高的准确率和效率。本发明结合相应的深度学习模型进行软件缺陷预测,提高软件缺陷预测模型的准确性。
-
-
-