-
公开(公告)号:CN113987033A
公开(公告)日:2022-01-28
申请号:CN202111615216.5
申请日:2021-12-28
Applicant: 国网江西省电力有限公司电力科学研究院 , 国家电网有限公司 , 国网江西省电力有限公司 , 南昌大学
Abstract: 本发明公开了一种主变在线监测数据群体偏差识别与校准方法,数据收集;对线下数据校核过的在线监测数据进行分段线性化,提取线段曲线与数据群体特征;构建分段关联挖掘模型,对曲线特征表征的线段集合进行符号化,使用Apriori算法挖掘在线检测数据不同指标的关联性,发现异常数值;考虑时段特性获取支持度变化,并识别数据偏差;利用强关联指标序列构建多指标预测模型,完成偏差校准;利用校准数据重新计算不同指标的关联性,验证数据群体偏差校准的可靠性。本发明可通过挖掘不同指标序列的关联规则,识别数据群体偏差,并构建一种基于改进遗传算法优化的BP神经网络算法多指标预测模型对数据群体偏差进行校准。
-
公开(公告)号:CN114372093A
公开(公告)日:2022-04-19
申请号:CN202111534103.2
申请日:2021-12-15
Applicant: 南昌大学
IPC: G06F16/2458 , G06F16/215 , G06K9/62 , G06N3/00 , G06N20/10 , G06Q50/06
Abstract: 本发明提出一种变压器DGA在线监测数据的处理方法,根据传回数据的特征,将在线数据等效为时间序列;第一阶段引入滑动窗口算法的思想,提出一种改进的序列分段线性化算法,将序列数据划分为若干由斜率与跨度表征的线段,再使用基于改进的K‑means聚类将在线监测数据符号化,最后使用APRIORI算法挖掘DGA中不同指标之间的关联性,并以此发掘其中存在的异常数值;第二阶段,根据筛除的异常数值采样点,使用改进的粒子群优化的支持向量回归算法,保障算法的求解速度与求解多样性,优化支持向量回归算法中的关键参数对这些采样点进行修复,以此完成变压器在线DGA监测数据的处理。
-
公开(公告)号:CN114169237A
公开(公告)日:2022-03-11
申请号:CN202111473398.7
申请日:2021-11-30
Applicant: 南昌大学
IPC: G06F30/27 , G06N3/04 , G06N3/08 , G06F119/08
Abstract: 本发明提出一种结合EEMD‑LSTM及孤立森林算法的电力电缆接头温度异常预警方法,针对中低压配电网的温度热点电力电缆接头,进行温度异常预警;根据接头历史温度监测数据,建立EEMD‑LSTM的温度预测模型;使用EEMD将原始温度数据序列分解为多个量级更小的子序列,提取接头温度变化趋势信息;通过LSTM对各子序列进行预测,并将子序列的预测结果进行重构,输出接头温度未来时刻温度预测值;采用孤立森林算法对由EEMD‑LSTM预测得到的温度指标进行温度异常检测;建立多个子检测分类器,以接头表面温度、线芯温度、相对温差两两组合,得到三组分类器;最后实现接头温度预警。本发明所提方法能够及时预判接头潜在异常温度,对温度过高、温升过快的电缆接头进行温度预警。
-
公开(公告)号:CN114169237B
公开(公告)日:2024-05-03
申请号:CN202111473398.7
申请日:2021-11-30
Applicant: 南昌大学
IPC: G06F30/27 , G06N3/044 , G06N3/08 , G06F119/08
Abstract: 本发明提出一种结合EEMD‑LSTM及孤立森林算法的电力电缆接头温度异常预警方法,针对中低压配电网的温度热点电力电缆接头,进行温度异常预警;根据接头历史温度监测数据,建立EEMD‑LSTM的温度预测模型;使用EEMD将原始温度数据序列分解为多个量级更小的子序列,提取接头温度变化趋势信息;通过LSTM对各子序列进行预测,并将子序列的预测结果进行重构,输出接头温度未来时刻温度预测值;采用孤立森林算法对由EEMD‑LSTM预测得到的温度指标进行温度异常检测;建立多个子检测分类器,以接头表面温度、线芯温度、相对温差两两组合,得到三组分类器;最后实现接头温度预警。本发明所提方法能够及时预判接头潜在异常温度,对温度过高、温升过快的电缆接头进行温度预警。
-
公开(公告)号:CN113987033B
公开(公告)日:2022-04-12
申请号:CN202111615216.5
申请日:2021-12-28
Applicant: 国网江西省电力有限公司电力科学研究院 , 国家电网有限公司 , 国网江西省电力有限公司 , 南昌大学
Abstract: 本发明公开了一种主变在线监测数据群体偏差识别与校准方法,数据收集;对线下数据校核过的在线监测数据进行分段线性化,提取线段曲线与数据群体特征;构建分段关联挖掘模型,对曲线特征表征的线段集合进行符号化,使用Apriori算法挖掘在线检测数据不同指标的关联性,发现异常数值;考虑时段特性获取支持度变化,并识别数据偏差;利用强关联指标序列构建多指标预测模型,完成偏差校准;利用校准数据重新计算不同指标的关联性,验证数据群体偏差校准的可靠性。本发明可通过挖掘不同指标序列的关联规则,识别数据群体偏差,并构建一种基于改进遗传算法优化的BP神经网络算法多指标预测模型对数据群体偏差进行校准。
-
-
-
-