一种基于先验引导的乳腺病灶深度学习分割方法

    公开(公告)号:CN113379691B

    公开(公告)日:2022-06-24

    申请号:CN202110605271.X

    申请日:2021-05-31

    Abstract: 一种基于先验引导的乳腺病灶深度学习分割方法,包括以下步骤:S1,读取乳腺超声图像数据;S2,获取病灶区域内的至少三个标记点;S3,使用线性光谱聚类超像素方法和多尺度组合分组方法处理图像;S4,通过加权求和的方式得到包含病灶先验信息的前景图像;S5,将前景先验图像取反,获得背景先验图像;S6,利用前景与背景先验图像进行前景与背景特征提取;S7,融合互补的前景与背景特征,输出病灶分割结果。本发明通过预处理获得包含乳腺肿瘤先验信息的图像后,利用U‑Net网络框架对病灶区域进行特征提取。该方法利用前景与背景先验信息的引导,提升超声乳腺病灶的分割精度。该方法分割得到的病灶图像,纹理细节丰富,边缘清晰,图像丢失少。

    基于显著图引导分层密集特征融合网络用于提取乳腺病变超声图像多尺度融合特征参数方法

    公开(公告)号:CN114332572B

    公开(公告)日:2024-03-26

    申请号:CN202111532955.8

    申请日:2021-12-15

    Abstract: 本发明提供一种基于显著图引导的分层密集特征融合网络用于提取乳腺病变超声图像多尺度融合特征参数的方法。该方法联合使用线性光谱聚类超像素方法和多尺度区域分组方法处理得到的特征表示图,避免有用信息的丢失,然后搭建一个三分支的分层密集特征融合网络进行前景特征、背景特征的提取和融合,用于提取乳腺病变超声图像多尺度融合特征参数。前景和背景两个进行性密集特征提取分支网络以原始图像和相应的显著图共同作为输入,分别用来有效地提取与该分类任务相关的前景和背景特征。根据前景和背景之间已知的相关性和补充性信息,分层特征融合分支网络将上述前景和背景信息进行多尺度的融合,获得更加准确,更加显著的多尺度融合特征参数。

    基于显著图引导分层密集特征融合网络用于提取乳腺病变超声图像多尺度融合特征参数方法

    公开(公告)号:CN114332572A

    公开(公告)日:2022-04-12

    申请号:CN202111532955.8

    申请日:2021-12-15

    Abstract: 本发明提供一种基于显著图引导的分层密集特征融合网络用于提取乳腺病变超声图像多尺度融合特征参数的方法。该方法联合使用线性光谱聚类超像素方法和多尺度区域分组方法处理得到的特征表示图,避免有用信息的丢失,然后搭建一个三分支的分层密集特征融合网络进行前景特征、背景特征的提取和融合,用于提取乳腺病变超声图像多尺度融合特征参数。前景和背景两个进行性密集特征提取分支网络以原始图像和相应的显著图共同作为输入,分别用来有效地提取与该分类任务相关的前景和背景特征。根据前景和背景之间已知的相关性和补充性信息,分层特征融合分支网络将上述前景和背景信息进行多尺度的融合,获得更加准确,更加显著的多尺度融合特征参数。

    一种基于先验引导的乳腺病灶深度学习分割方法

    公开(公告)号:CN113379691A

    公开(公告)日:2021-09-10

    申请号:CN202110605271.X

    申请日:2021-05-31

    Abstract: 一种基于先验引导的乳腺病灶深度学习分割方法,包括以下步骤:S1,读取乳腺超声图像数据;S2,获取病灶区域内的至少三个标记点;S3,使用线性光谱聚类超像素方法和多尺度组合分组方法处理图像;S4,通过加权求和的方式得到包含病灶先验信息的前景图像;S5,将前景先验图像取反,获得背景先验图像;S6,利用前景与背景先验图像进行前景与背景特征提取;S7,融合互补的前景与背景特征,输出病灶分割结果。本发明通过预处理获得包含乳腺肿瘤先验信息的图像后,利用U‑Net网络框架对病灶区域进行特征提取。该方法利用前景与背景先验信息的引导,提升超声乳腺病灶的分割精度。该方法分割得到的病灶图像,纹理细节丰富,边缘清晰,图像丢失少。

Patent Agency Ranking