-
公开(公告)号:CN109409125A
公开(公告)日:2019-03-01
申请号:CN201811193850.2
申请日:2018-10-12
Applicant: 南京邮电大学
Abstract: 本发明公开了一种提供隐私保护的数据采集和回归分析方法,采用差分隐私来保护数据提供者的隐私,并通过补偿机制来激励提供者提供真实的数据。首先,在回归模型的分析模块,本方法采用岭回归模型,将损失函数展开成多项式混沌的形式,并在每个多项式前面的系数上加入拉普拉斯噪声,从而保证训练得到的回归模型既保护了数据提供者的隐私,又保证了模型的准确性;然后,在报酬支付模块,计算出除去数据提供者提供的数据得到的回归模型,与整体的回归模型进行比较,将以上两者的误差作为每个数据提供者报酬的量度,换言之,误差越小,也就是数据越准确,那么相应的报酬越多。简言之,通过隐私保护和适当的报酬,本方法能激励更真实的汇报数据,训练得到更准确的模型。
-
公开(公告)号:CN109409125B
公开(公告)日:2022-05-31
申请号:CN201811193850.2
申请日:2018-10-12
Applicant: 南京邮电大学
Abstract: 本发明公开了一种提供隐私保护的数据采集和回归分析方法,采用差分隐私来保护数据提供者的隐私,并通过补偿机制来激励提供者提供真实的数据。首先,在回归模型的分析模块,本方法采用岭回归模型,将损失函数展开成多项式混沌的形式,并在每个多项式前面的系数上加入拉普拉斯噪声,从而保证训练得到的回归模型既保护了数据提供者的隐私,又保证了模型的准确性;然后,在报酬支付模块,计算出除去数据提供者提供的数据得到的回归模型,与整体的回归模型进行比较,将以上两者的误差作为每个数据提供者报酬的量度,换言之,误差越小,也就是数据越准确,那么相应的报酬越多。简言之,通过隐私保护和适当的报酬,本方法能激励更真实的汇报数据,训练得到更准确的模型。
-