-
公开(公告)号:CN115910376A
公开(公告)日:2023-04-04
申请号:CN202211510066.6
申请日:2022-11-29
Applicant: 南京邮电大学
Abstract: 本发明属于接触检测技术领域,具体地说,是一种基于联邦强化学习的密接检测系统及检测方法,系统具体分为边缘用户终端及中心云服务端两部分,方法包括密接检测系统训练和密接检测系统使用两部分,本发明能够做到在联邦学习环境下,用户之间通过蓝牙信号传输的接触数据始终保存在边缘用户终端,保护了用户数据及隐私安全;通过利用循环神经网络学习蓝牙密接信号与距离之间的关联性,学习得到密接时间推断模型,通过输入蓝牙信号序列数据得到不同距离区间下的密接时间;本发明基于强化学习的参数融合方法通过使用多agent强化学习方法,学习在联邦学习环境参数融合过程中边缘用户终端的权重选择,保证了在不同训练场景下能得到最大的模型精度。