-
公开(公告)号:CN119047784A
公开(公告)日:2024-11-29
申请号:CN202411287073.3
申请日:2024-09-13
Applicant: 南京邮电大学
IPC: G06Q10/0631 , G06Q10/04 , G06Q50/06 , G06N3/08 , G06F40/186 , G06N3/045 , G06N3/048
Abstract: 本发明涉及一种基于大型语言模型的电动汽车充电站负荷有序调控方法,具体如下:首先,对电动汽车充电站的历史充电负荷时间序列数据进行采集,对历史充电负荷时间序列数据进行归一化处理,其次,对充电负荷时序片段分别采集对应的工作日/节假日、天气、气温、交通状况等环境数据,生成环境数据输入量;然后,以充电负荷时序片段和环境数据作为输入,构造充电负荷时间序列预测模型;构造双重优化目标,对充电负荷时间序列预测模型进行训练,实现对未来充电负荷进行预测;最后,基于所述充电负荷预测结果进行需求响应,并对充电站内充电设施进行调控,以根据所述负荷预测结果实现相应有序充电的优化管理。该方案提高了充电负荷预测的准确性。
-
公开(公告)号:CN119047784B
公开(公告)日:2025-03-28
申请号:CN202411287073.3
申请日:2024-09-13
Applicant: 南京邮电大学
IPC: G06Q10/0631 , G06Q10/04 , G06Q50/06 , G06N3/08 , G06F40/186 , G06N3/045 , G06N3/048
Abstract: 本发明涉及一种基于大型语言模型的电动汽车充电站负荷有序调控方法,具体如下:首先,对电动汽车充电站的历史充电负荷时间序列数据进行采集,对历史充电负荷时间序列数据进行归一化处理,其次,对充电负荷时序片段分别采集对应的工作日/节假日、天气、气温、交通状况等环境数据,生成环境数据输入量;然后,以充电负荷时序片段和环境数据作为输入,构造充电负荷时间序列预测模型;构造双重优化目标,对充电负荷时间序列预测模型进行训练,实现对未来充电负荷进行预测;最后,基于所述充电负荷预测结果进行需求响应,并对充电站内充电设施进行调控,以根据所述负荷预测结果实现相应有序充电的优化管理。该方案提高了充电负荷预测的准确性。
-