-
公开(公告)号:CN106980876A
公开(公告)日:2017-07-25
申请号:CN201710145628.4
申请日:2017-03-13
Applicant: 南京邮电大学
IPC: G06K9/62
CPC classification number: G06K9/6276 , G06K9/6277
Abstract: 本发明公开了一种基于鉴别性样本属性学习的零样本图像识别方法,首先我们在源域和目标域共同学习投影矩阵,并使用源域和目标域每类的原型来调整学习到的投影矩阵。然后,利用学习到的投影矩阵把目标域的图像特征映射到属性空间得到其属性表示。最后,在属性空间上利用最近邻分类器对图像进行分类。对目标域而言,已有的投影矩阵学习方法由于未考虑目标域与源域的分布差异从而更容易导致域迁移问题,而我们的算法通过综合利用源域和目标域的样本信息缓解这种影响,能够取得了更高的图像识别准确率。
-
公开(公告)号:CN106980875A
公开(公告)日:2017-07-25
申请号:CN201710145493.1
申请日:2017-03-13
Applicant: 南京邮电大学
IPC: G06K9/62
CPC classification number: G06K9/6256 , G06K9/6277
Abstract: 本发明公开了一种基于属性低秩表示的零样本图像识别方法:首先通过寻求已知类别属性对未知类别属性的低秩表达来挖掘已知类别与未知类别在属性上的内在联系;然后利用这种属性联系虚拟出未知类别的训练样本;最后基于已知类别和未知类别的训练样本学习出属性预测器。在对未知类别样本进行标签预测时,用训练好的属性预测器预测出未知样本的属性,之后把预测的属性与原型属性进行比对通过最近邻分类器得到未知样本的类别标签。与已有的零样本图像识别方法相比,本发明算法能取得更高的识别准确率。
-