-
公开(公告)号:CN119272845B
公开(公告)日:2025-04-25
申请号:CN202411783712.5
申请日:2024-12-06
Applicant: 南京邮电大学
Abstract: 本发明属于信息技术领域,公开一种用于工业异构设备的对比双焦点知识蒸馏联邦学习方法,通过1个服务器和N个客户端构建对比双焦点知识蒸馏联邦学习模型,各个客户端分别在本地数据集上进行预训练,得到初始化本地模型;服务器接收来自多个客户端的知识,通过双焦点蒸馏策略推动服务器模型演化为更高精度、更具泛化能力的服务器端全局模型,客户端计算全局模型与本地模型输出的特征对比损失和相对熵损失,同时,计算本地模型与全局模型和上一轮本地模型输出的特征对比损失,以及本地模型输出与硬性标签之间的交叉熵,通过知识蒸馏损失项和本地监督损失项的联合训练,本地模型在保持原有数据分布优势的同时,能够获得更高的全局准确率。
-
公开(公告)号:CN119272845A
公开(公告)日:2025-01-07
申请号:CN202411783712.5
申请日:2024-12-06
Applicant: 南京邮电大学
Abstract: 本发明属于信息技术领域,公开一种用于工业异构设备的对比双焦点知识蒸馏联邦学习方法,通过1个服务器和N个客户端构建对比双焦点知识蒸馏联邦学习模型,各个客户端分别在本地数据集上进行预训练,得到初始化本地模型;服务器接收来自多个客户端的知识,通过双焦点蒸馏策略推动服务器模型演化为更高精度、更具泛化能力的服务器端全局模型,客户端计算全局模型与本地模型输出的特征对比损失和相对熵损失,同时,计算本地模型与全局模型和上一轮本地模型输出的特征对比损失,以及本地模型输出与硬性标签之间的交叉熵,通过知识蒸馏损失项和本地监督损失项的联合训练,本地模型在保持原有数据分布优势的同时,能够获得更高的全局准确率。
-