-
公开(公告)号:CN112818011B
公开(公告)日:2022-03-08
申请号:CN202110033537.8
申请日:2021-01-12
Applicant: 南京邮电大学
IPC: G06F16/2453 , G06N3/08
Abstract: 本发明涉及深度学习和谣言识别领域,特别涉及改进的TextCNN与TextRNN谣言识别方法,步骤1,通过BERT预训练模型将言论文本及其评论转化为句向量;步骤2,构建改进的TextCNN模型;步骤3,构建改进的TextRNN模型;步骤4,对步骤2和步骤3中两种模型的输出进行加权融合,最后判断是否谣言;TextCNN更利于深度挖掘消息文本的语义特征,而TextRNN在挖掘消息文本的时序特征上更好,将CNN模型与RNN模型相结合并且改进可实现更高效识别。
-
公开(公告)号:CN112818011A
公开(公告)日:2021-05-18
申请号:CN202110033537.8
申请日:2021-01-12
Applicant: 南京邮电大学
IPC: G06F16/2453 , G06N3/08
Abstract: 本发明涉及深度学习和谣言识别领域,特别涉及改进的TextCNN与TextRNN谣言识别方法,步骤1,通过BERT预训练模型将言论文本及其评论转化为句向量;步骤2,构建改进的TextCNN模型;步骤3,构建改进的TextRNN模型;步骤4,对步骤2和步骤3中两种模型的输出进行加权融合,最后判断是否谣言;TextCNN更利于深度挖掘消息文本的语义特征,而TextRNN在挖掘消息文本的时序特征上更好,将CNN模型与RNN模型相结合并且改进可实现更高效识别。
-