-
公开(公告)号:CN114494478A
公开(公告)日:2022-05-13
申请号:CN202210191948.4
申请日:2022-02-28
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于特征图线性依赖的模型压缩方法,包括:统计神经网络模型中卷积层的个数以及每个卷积层中的通道数;通过输入少量的数据集,获取每个通道输出的特征图;基于特征图的信息熵,计算出每个通道在其所属的卷积层中的线性依赖独立性,并作为局部重要性;对于求出的局部重要性,基于遗传进化算法,求出每个卷积层的全局规模系数和全局偏差系数,把局部重要性转换成全局重要性;根据设置的目标压缩率,求出相应的阈值,并移除全局重要性小于阈值的通道,从而得到最优子网络;对得到的最优子网络进行自适应加权的多网络联合并行训练,恢复网络模型的性能。