-
公开(公告)号:CN115758218A
公开(公告)日:2023-03-07
申请号:CN202211470232.4
申请日:2022-11-22
Applicant: 南京邮电大学
IPC: G06F18/24 , G06F18/214 , G06F18/25 , G06N3/0442 , G06N3/0464 , G06N3/08
Abstract: 本发明公开一种基于长短时特征和决策融合的三模态情感分析方法,该方法包括:将多模态情感数据集中的样本分成训练集和测试集,分别对其进行预处理,生成文本、表情、语音的长时序列和短时序列;分别构建基于长/短时特征的情感分类模型,使用预处理后的训练样本对其进行训练,训练好后分别对测试集样本进行情感分类,统计对应的分类混淆矩阵;使用训练好的基于长/短时特征的情感分类模型分别对被测视频进行情感分类,并利用对应的分类混淆矩阵对分类结果进行决策融合,得到被测视频的情感类别。本发明以三模态时序信号的长/短时特征的互补性和差异性为出发点,将长/短时特征融合和决策融合相结合,有效提升情感分类的准确率和鲁棒性。