-
公开(公告)号:CN109766863B
公开(公告)日:2022-09-06
申请号:CN201910051451.0
申请日:2019-01-18
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/762 , G06K9/62 , G06T3/40
Abstract: 本发明公开了一种基于局部和稀疏非局部正则的人脸图像超分辨率方法,包括以下步骤:步骤一:获取测试图像和训练样本图像各个像素位置的图像块;步骤二:使用局部PCA字典学习方法,对训练样本图像块使用K均值聚类算法将图像块划分聚类,每个聚类学习一个局部PCA字典;步骤三:对低质量图像块,运用基于局部约束和稀疏非局部双核范数正则算法求解最佳表示系数向量;步骤四:使用最佳表示系数向量在高分辨率字典上合成高分辨率图像块,更新非局部编码系数,将更新后的系数和高分辨率图像块放入步骤三中进行下一次迭代;经过多次迭代更新得到高分辨率图像块;步骤五:输出高分辨率图像。本发明具有提高图像质量的优点。
-
公开(公告)号:CN111104868A
公开(公告)日:2020-05-05
申请号:CN201911164077.1
申请日:2019-11-25
Applicant: 南京邮电大学
Abstract: 本发明提出了一种基于卷积神经网络特征的跨质量人脸识别方法,该方法首先获取高质量训练样本图像、低质量测试样本图像、高低质量训练字典样本图像各个特征点的图像块;其次设计一深度卷积神经网络,对于每个特征点图像块,通过神经网络的学习得到一个特征向量;再次对测试图像块的特征向量和训练图像块的特征向量进行线性表示;然后对低质量测试图像块的特征表示和高分辨率训练图像块的特征表示进行相似性度量,并输出每一个测试图像块的类别;最后对于一张人脸图像分为S个人脸关键点的图像块集合,对每一个关键点位置的图像块分类结果进行投票,将图像分给获取票数最多的那一个类,输出最终低质量测试图像的类别。
-
公开(公告)号:CN109766863A
公开(公告)日:2019-05-17
申请号:CN201910051451.0
申请日:2019-01-18
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于局部和稀疏非局部正则的人脸图像超分辨率方法,包括以下步骤:步骤一:获取测试图像和训练样本图像各个像素位置的图像块;步骤二:使用局部PCA字典学习方法,对训练样本图像块使用K均值聚类算法将图像块划分聚类,每个聚类学习一个局部PCA字典;步骤三:对低质量图像块,运用基于局部约束和稀疏非局部双核范数正则算法求解最佳表示系数向量;步骤四:使用最佳表示系数向量在高分辨率字典上合成高分辨率图像块,更新非局部编码系数,将更新后的系数和高分辨率图像块放入步骤三中进行下一次迭代;经过多次迭代更新得到高分辨率图像块;步骤五:输出高分辨率图像。本发明具有提高图像质量的优点。
-
公开(公告)号:CN111104868B
公开(公告)日:2022-08-23
申请号:CN201911164077.1
申请日:2019-11-25
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/82 , G06V10/772 , G06V10/774 , G06N3/04 , G06N3/08 , G06K9/62
Abstract: 本发明提出了一种基于卷积神经网络特征的跨质量人脸识别方法,该方法首先获取高质量训练样本图像、低质量测试样本图像、高低质量训练字典样本图像各个特征点的图像块;其次设计一深度卷积神经网络,对于每个特征点图像块,通过神经网络的学习得到一个特征向量;再次对测试图像块的特征向量和训练图像块的特征向量进行线性表示;然后对低质量测试图像块的特征表示和高分辨率训练图像块的特征表示进行相似性度量,并输出每一个测试图像块的类别;最后对于一张人脸图像分为S个人脸关键点的图像块集合,对每一个关键点位置的图像块分类结果进行投票,将图像分给获取票数最多的那一个类,输出最终低质量测试图像的类别。
-
公开(公告)号:CN110458092A
公开(公告)日:2019-11-15
申请号:CN201910733434.5
申请日:2019-08-09
Applicant: 南京邮电大学
Abstract: 一种基于L2正则化梯度约束稀疏表示的人脸识别方法,所述方法包括:获取训练样本集;基于人脸图像梯度恢复约束信息和L2正则化稀疏表示方法,计算待识别样本在所述训练样本集的训练样本上的表示系数;采用所述待识别样本在训练样本上的表示系数,计算所述待识别样本在所述训练样本集的每类训练样本上的残差;将计算得到的最小残差对应的训练样本类别,作为所述待识别样本的类别进行输出。上述的方案,可以提高人脸识别的准确性。
-
公开(公告)号:CN110458092B
公开(公告)日:2022-08-30
申请号:CN201910733434.5
申请日:2019-08-09
Applicant: 南京邮电大学
IPC: G06V10/764 , G06V10/774 , G06V40/16 , G06K9/62
Abstract: 一种基于L2正则化梯度约束稀疏表示的人脸识别方法,所述方法包括:获取训练样本集;基于人脸图像梯度恢复约束信息和L2正则化稀疏表示方法,计算待识别样本在所述训练样本集的训练样本上的表示系数;采用所述待识别样本在训练样本上的表示系数,计算所述待识别样本在所述训练样本集的每类训练样本上的残差;将计算得到的最小残差对应的训练样本类别,作为所述待识别样本的类别进行输出。上述的方案,可以提高人脸识别的准确性。
-
公开(公告)号:CN111008575A
公开(公告)日:2020-04-14
申请号:CN201911163739.3
申请日:2019-11-25
Applicant: 南京邮电大学
IPC: G06K9/00
Abstract: 本发明提出了一种基于多尺度上下文信息融合的鲁棒人脸识别方法,包括以下步骤:获取人脸关键点上下文信息;在特定尺度下对关键点图像块集合进行分;对待识别样本进行多尺度集成分类。本发明充分考虑人脸图像不同部位的上下文语义信息差异,提出使用检测到的关键点周围图像块集合来描述人脸图像不同部位的上下文语义信息,并使用多尺度集成方法来降低待识别样本图像块的尺度大小对识别效果的影响,提高了识别精度,为后续人脸识别方法的发展提供帮助。
-
公开(公告)号:CN109815889B
公开(公告)日:2022-08-30
申请号:CN201910055693.7
申请日:2019-01-21
Applicant: 南京邮电大学
IPC: G06V40/16 , G06K9/62 , G06V10/774
Abstract: 本发明公开了一种基于特征表示集的跨分辨率人脸识别方法,包括以下步骤:先获取高分辨率训练样本图像、低分辨率测试样本图像和高低分辨率训练字典图像各个像素位置的图像块;然后对低质量测试图像中的每个图像块,运用图像块的约束P范数正则回归方法获得其在低质量训练字典图像中对应位置上的图像块集合的线性表示,运用同样方法对高分辨率训练样本图像获得其在高分辨率字典对应位置上图像块集合的线性表示;再对低分辨率测试图像块特征表示集合和高分辨率训练图像特征表示集进行相似性度量;最后测试图像类别。本发明的优点是:能对分辨率不一致的人脸图像进行准确身份识别,有效解决了因人脸图像分辨率不一致难以识别的问题。
-
公开(公告)号:CN111008575B
公开(公告)日:2022-08-23
申请号:CN201911163739.3
申请日:2019-11-25
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/764 , G06V10/80
Abstract: 本发明提出了一种基于多尺度上下文信息融合的鲁棒人脸识别方法,包括以下步骤:获取人脸关键点上下文信息;在特定尺度下对关键点图像块集合进行分;对待识别样本进行多尺度集成分类。本发明充分考虑人脸图像不同部位的上下文语义信息差异,提出使用检测到的关键点周围图像块集合来描述人脸图像不同部位的上下文语义信息,并使用多尺度集成方法来降低待识别样本图像块的尺度大小对识别效果的影响,提高了识别精度,为后续人脸识别方法的发展提供帮助。
-
公开(公告)号:CN109815889A
公开(公告)日:2019-05-28
申请号:CN201910055693.7
申请日:2019-01-21
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于特征表示集的跨分辨率人脸识别方法,包括以下步骤:先获取高分辨率训练样本图像、低分辨率测试样本图像和高低分辨率训练字典图像各个像素位置的图像块;然后对低质量测试图像中的每个图像块,运用图像块的约束P范数正则回归方法获得其在低质量训练字典图像中对应位置上的图像块集合的线性表示,运用同样方法对高分辨率训练样本图像获得其在高分辨率字典对应位置上图像块集合的线性表示;再对低分辨率测试图像块特征表示集合和高分辨率训练图像特征表示集进行相似性度量;最后测试图像类别。本发明的优点是:能对分辨率不一致的人脸图像进行准确身份识别,有效解决了因人脸图像分辨率不一致难以识别的问题。
-
-
-
-
-
-
-
-
-