一种基于离线策略强化学习的机械臂控制方法及系统

    公开(公告)号:CN114888801A

    公开(公告)日:2022-08-12

    申请号:CN202210525911.0

    申请日:2022-05-16

    Abstract: 本发明公开了机械手控制领域的一种基于离线策略强化学习的机械臂控制方法及系统,包括:将状态信息s输入至上位机系统,通过抓取模型形成轨迹控制指令控制机械臂抓取所述目标体;所述抓取模型构建过程包括:构建抓取任务训练集;仿真环境中通过抓取任务训练集对抓取模型进行训练,得到仿真抓取任务元训练模型;在真实环境中对仿真抓取任务元训练模型进行少量训练;利用仿真训练过程中的仿真数据Dmeta再次对仿真抓取任务元训练模型进行仿真训练,获得收敛的抓取模型;本发明提高了抓取模型的泛化性和迁移过程的样本效率,缩短了模型迁移时间,同时降低了机械臂在现实中训练的风险。

    一种基于离线策略强化学习的机械臂控制方法及系统

    公开(公告)号:CN114888801B

    公开(公告)日:2023-10-13

    申请号:CN202210525911.0

    申请日:2022-05-16

    Abstract: 本发明公开了机械手控制领域的一种基于离线策略强化学习的机械臂控制方法及系统,包括:将状态信息s输入至上位机系统,通过抓取模型形成轨迹控制指令控制机械臂抓取所述目标体;所述抓取模型构建过程包括:构建抓取任务训练集;仿真环境中通过抓取任务训练集对抓取模型进行训练,得到仿真抓取任务元训练模型;在真实环境中对仿真抓取任务元训练模型进行少量训练;利用仿真训练过程中的仿真数据Dmeta再次对仿真抓取任务元训练模型进行仿真训练,获得收敛的抓取模型;本发明提高了抓取模型的泛化性和迁移过程的样本效率,缩短了模型迁移时间,同时降低了机械臂在现实中训练的风险。

Patent Agency Ranking