一种基于目标语义和深度外观特征融合的场景识别方法

    公开(公告)号:CN108334830B

    公开(公告)日:2022-10-04

    申请号:CN201810071440.4

    申请日:2018-01-25

    Abstract: 一种基于目标语义和深度外观特征融合的场景识别方法,具体步骤为:获取待识别的场景图像;提取场景图像的目标语义信息,生成保持空间布局信息的目标语义特征;提取场景图像的外观上下文信息,生成外观上下文特征;提取场景图像的外观全局信息,生成外观全局特征;根据目标语义特征、外观上下文特征和外观全局特征,获取场景图像的识别结果。本发明采用多类目标检测器算法,精准地获取关键目标、类别及其布局信息;通过SFV模型获取室内场景图像的目标语义特征;卷积层和LSTM层组成端到端可训练的混合DNN网络结构可以有效提取场景图像的上下文相信息。该方法融合了目标语义信息、全局外观信息和外观的上下文特征,提高了识别算方法的识别率和鲁棒性。

    一种基于目标语义和深度外观特征融合的场景识别方法

    公开(公告)号:CN108334830A

    公开(公告)日:2018-07-27

    申请号:CN201810071440.4

    申请日:2018-01-25

    Abstract: 一种基于目标语义和深度外观特征融合的场景识别方法,具体步骤为:获取待识别的场景图像;提取场景图像的目标语义信息,生成保持空间布局信息的目标语义特征;提取场景图像的外观上下文信息,生成外观上下文特征;提取场景图像的外观全局信息,生成外观全局特征;根据目标语义特征、外观上下文特征和外观全局特征,获取场景图像的识别结果。本发明采用多类目标检测器算法,精准地获取关键目标、类别及其布局信息;通过SFV模型获取室内场景图像的目标语义特征;卷积层和LSTM层组成端到端可训练的混合DNN网络结构可以有效提取场景图像的上下文相信息。该方法融合了目标语义信息、全局外观信息和外观的上下文特征,提高了识别算方法的识别率和鲁棒性。

Patent Agency Ranking