-
公开(公告)号:CN108446609A
公开(公告)日:2018-08-24
申请号:CN201810173858.6
申请日:2018-03-02
Applicant: 南京邮电大学
Abstract: 本发明揭示了一种基于生成对抗网络的多角度面部表情识别方法,该方法包括以下步骤:S1步骤:通过构建多角度人脸生成对抗网络来学习由侧脸图像生成正脸图像的变换关系;S2步骤:使用正脸表情图像训练用于判别正脸表情类别的深度神经网络;S3步骤:将多角度人脸生成对抗网络的低层部分与正脸表情判别网络的高层相连接,形成一个判别侧脸表情类别的深度神经网络;S4步骤:将一个侧脸表情图像T输入到深度神经网络,得到对该图像中面部表情的识别结果。本方法在两个标准人脸表情图像数据库上进行了大量测试,结果显示该方法实现了在缺乏侧脸表情图像训练数据时对多角度侧脸图像的面部表情识别功能。
-
公开(公告)号:CN108446609B
公开(公告)日:2022-03-11
申请号:CN201810173858.6
申请日:2018-03-02
Applicant: 南京邮电大学
Abstract: 本发明揭示了一种基于生成对抗网络的多角度面部表情识别方法,该方法包括以下步骤:S1步骤:通过构建多角度人脸生成对抗网络来学习由侧脸图像生成正脸图像的变换关系;S2步骤:使用正脸表情图像训练用于判别正脸表情类别的深度神经网络;S3步骤:将多角度人脸生成对抗网络的低层部分与正脸表情判别网络的高层相连接,形成一个判别侧脸表情类别的深度神经网络;S4步骤:将一个侧脸表情图像T输入到深度神经网络,得到对该图像中面部表情的识别结果。本方法在两个标准人脸表情图像数据库上进行了大量测试,结果显示该方法实现了在缺乏侧脸表情图像训练数据时对多角度侧脸图像的面部表情识别功能。
-