一种结合深度学习与稀疏表示的室内场景识别方法

    公开(公告)号:CN106650798A

    公开(公告)日:2017-05-10

    申请号:CN201611120285.8

    申请日:2016-12-08

    CPC classification number: G06K9/6256 G06K9/6268 G06N3/08

    Abstract: 本发明公开了一种结合深度学习与稀疏表示的室内场景识别方法,包括步骤:从室内场景库中随机挑选若干张室内场景图像作为训练样本,将剩余作为测试样本;利Fast‑RCNN算法对训练和测试样本进行物体类别判别和检测,以构建得到每张室内场景图像的底层特征;利用词袋模型将每张室内场景图像的底层特征和空间特征结合,构建得到中层特征;对训练样本中的中层特征进行糅合构建得到稀疏字典;利用稀疏字典对测试样本进行稀疏表示,及根据求解出的稀疏解与所输入的测试样本计算得到残差,并根据残差的大小判断测试样本所属的物体类别;将判断得到所属的物体类别输出。本发明能准确识别室内场景,可有效提高室内场景识别的准确率和鲁棒性,具有很高的实用性能。

    一种结合深度学习与稀疏表示的室内场景识别方法

    公开(公告)号:CN106650798B

    公开(公告)日:2019-06-21

    申请号:CN201611120285.8

    申请日:2016-12-08

    Abstract: 本发明公开了一种结合深度学习与稀疏表示的室内场景识别方法,包括步骤:从室内场景库中随机挑选若干张室内场景图像作为训练样本,将剩余作为测试样本;利Fast‑RCNN算法对训练和测试样本进行物体类别判别和检测,以构建得到每张室内场景图像的底层特征;利用词袋模型将每张室内场景图像的底层特征和空间特征结合,构建得到中层特征;对训练样本中的中层特征进行糅合构建得到稀疏字典;利用稀疏字典对测试样本进行稀疏表示,及根据求解出的稀疏解与所输入的测试样本计算得到残差,并根据残差的大小判断测试样本所属的物体类别;将判断得到所属的物体类别输出。本发明能准确识别室内场景,可有效提高室内场景识别的准确率和鲁棒性,具有很高的实用性能。

Patent Agency Ranking