-
公开(公告)号:CN114897842B
公开(公告)日:2024-12-13
申请号:CN202210545081.8
申请日:2022-05-19
Applicant: 南京邮电大学
IPC: G06V10/26 , G06V10/44 , G06V10/54 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06T7/00
Abstract: 本发明是一种基于纹理增强网络的红外小目标分割检测方法,包括步骤1:从原始视频数据集中获取带有红外小目标的图片,将图片划分为训练集和测试集,然后为图片打上标注,得到数据图片以及与之对应的标签图像数据集;步骤2:将获得的数据图片以及标签图像数据集输入纹理增强网络中,得到三个子输出;步骤3:构建差异性损失来度量得到的3个子输出特征图,得到差异性损失,并根据3个子输出计算出平均输出;步骤4:将得到的平均输出转化成单通道的分割预测图像,得到最终预测图像的输出。本发明在纹理增强网络的基础上构建了差异性损失,以一种更加高效准确的方式逼近网络,检测概率得到了提升,生成的预测分割图片简洁明了,无多余杂波出现。
-
公开(公告)号:CN114897842A
公开(公告)日:2022-08-12
申请号:CN202210545081.8
申请日:2022-05-19
Applicant: 南京邮电大学
IPC: G06T7/00 , G06T7/10 , G06K9/62 , G06V10/44 , G06V10/54 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明是一种基于纹理增强网络的红外小目标分割检测方法,包括步骤1:从原始视频数据集中获取带有红外小目标的图片,将图片划分为训练集和测试集,然后为图片打上标注,得到数据图片以及与之对应的标签图像数据集;步骤2:将获得的数据图片以及标签图像数据集输入纹理增强网络中,得到三个子输出;步骤3:构建差异性损失来度量得到的3个子输出特征图,得到差异性损失,并根据3个子输出计算出平均输出;步骤4:将得到的平均输出转化成单通道的分割预测图像,得到最终预测图像的输出。本发明在纹理增强网络的基础上构建了差异性损失,以一种更加高效准确的方式逼近网络,检测概率得到了提升,生成的预测分割图片简洁明了,无多余杂波出现。
-