一种基于计算机视觉的水稻叶片SPAD值估测方法及系统

    公开(公告)号:CN109827957A

    公开(公告)日:2019-05-31

    申请号:CN201811540722.0

    申请日:2018-12-17

    Abstract: 本发明公开了一种基于计算机视觉的水稻叶片SPAD值估测方法,该方法包括:(1)采集一定数量的水稻叶片样本,并将所述水稻样本放在18%灰板上,获取对应样本图像;(2)测定所有样本图像的SPAD值;(3)采用阈值分割法去除样本图像中的灰板部分,留下绿色叶片主体部分;(4)提取所述样本图像的颜色特征,获得样本图像中的RGB颜色空间中颜色特征和HSV颜色空间中的颜色特征;(5)以所述颜色分量为输入,采用逐步回归分析方法,建立基于颜色分量的SPAD值估测模型M'2。本发明提出的方法,可快速得到整片水稻叶片SPAD值数据,估测结果精度较高、误差小,不仅能减少人工检测水稻叶片SPAD值的工作效率,还能为水稻叶片可视化研究提供依据。

    一种基于计算机视觉的水稻叶片SPAD值估测方法及系统

    公开(公告)号:CN109827957B

    公开(公告)日:2021-04-06

    申请号:CN201811540722.0

    申请日:2018-12-17

    Abstract: 本发明公开了一种基于计算机视觉的水稻叶片SPAD值估测方法,该方法包括:(1)采集一定数量的水稻叶片样本,并将所述水稻样本放在18%灰板上,获取对应样本图像;(2)测定所有样本图像的SPAD值;(3)采用阈值分割法去除样本图像中的灰板部分,留下绿色叶片主体部分;(4)提取所述样本图像的颜色特征,获得样本图像中的RGB颜色空间中颜色特征和HSV颜色空间中的颜色特征;(5)以所述颜色分量为输入,采用逐步回归分析方法,建立基于颜色分量的SPAD值估测模型M'2。本发明提出的方法,可快速得到整片水稻叶片SPAD值数据,估测结果精度较高、误差小,不仅能减少人工检测水稻叶片SPAD值的工作效率,还能为水稻叶片可视化研究提供依据。

Patent Agency Ranking