-
公开(公告)号:CN110209954B
公开(公告)日:2022-08-26
申请号:CN201910476821.5
申请日:2019-06-03
Applicant: 南京邮电大学
IPC: G06F16/9536 , G06Q50/00
Abstract: 本发明公开了一种基于LDA主题模型和深度学习的群组推荐方法,包括:获取用户的历史信息,所述用户的历史信息包括:用户参与的服务信息、用户参与的群组信息;基于所述用户的历史信息中的主题内容以及LDA主题模型,获得所述用户的历史信息的期间范围内的动态偏好;描述所述用户的动态偏好与服务之间的对应关系;通过群组中各个用户之间的相互影响,修正群组内各个用户的动态偏好与服务之间的对应关系,之后得到群组对于服务的偏好。采用上述方案,可以解决用户偏好相对于时间因素而产生变化的问题;考虑到用户的社交关系对用户的服务选择的影响,更符合实际生活中推荐系统的需求,提高了推荐的精度和准确度。
-
公开(公告)号:CN110209954A
公开(公告)日:2019-09-06
申请号:CN201910476821.5
申请日:2019-06-03
Applicant: 南京邮电大学
IPC: G06F16/9536 , G06Q50/00
Abstract: 本发明公开了一种基于LDA主题模型和深度学习的群组推荐方法,包括:获取用户的历史信息,所述用户的历史信息包括:用户参与的服务信息、用户参与的群组信息;基于所述用户的历史信息中的主题内容以及LDA主题模型,获得所述用户的历史信息的期间范围内的动态偏好;描述所述用户的动态偏好与服务之间的对应关系;通过群组中各个用户之间的相互影响,修正群组内各个用户的动态偏好与服务之间的对应关系,之后得到群组对于服务的偏好。采用上述方案,可以解决用户偏好相对于时间因素而产生变化的问题;考虑到用户的社交关系对用户的服务选择的影响,更符合实际生活中推荐系统的需求,提高了推荐的精度和准确度。
-