空间自注意力机制及目标检测方法

    公开(公告)号:CN111222562A

    公开(公告)日:2020-06-02

    申请号:CN202010002235.X

    申请日:2020-01-02

    Abstract: 本发明提供了一种空间自注意力机制及目标检测方法,对特征图F进行自适应平均池化得到特征图F′;对特征图F′进行两次降维映射,得到f(F′)与g(F′)并按行展开,得到矩阵M和矩阵N;将矩阵M和矩阵N进行相乘,得到矩阵Z;对矩阵Z通过行卷积得到特征图Y;再使用sigmoid激活并进行拓展,得到特征图Q;对特征图Q进行反自适应平均池化,得到最终空间每个像素的权重,将所述权重与特征图F进行点乘,以获得最终特征图R作为下一个卷积层的输入。本发明基于空间自注意力机制,能够更好地提高目标检测方法的精度,本发明简单高效,且计算量较低,可应用到任意卷积网络的前向过程中,为特征图提供全局信息指导,提高卷积网络的表达能力。

    基于空间自注意力机制的目标检测方法

    公开(公告)号:CN111222562B

    公开(公告)日:2022-04-08

    申请号:CN202010002235.X

    申请日:2020-01-02

    Abstract: 本发明提供了一种空间自注意力机制及目标检测方法,对特征图F进行自适应平均池化得到特征图F′;对特征图F′进行两次降维映射,得到f(F′)与g(F′)并按行展开,得到矩阵M和矩阵N;将矩阵M和矩阵N进行相乘,得到矩阵Z;对矩阵Z通过行卷积得到特征图Y;再使用sigmoid激活并进行拓展,得到特征图Q;对特征图Q进行反自适应平均池化,得到最终空间每个像素的权重,将所述权重与特征图F进行点乘,以获得最终特征图R作为下一个卷积层的输入。本发明基于空间自注意力机制,能够更好地提高目标检测方法的精度,本发明简单高效,且计算量较低,可应用到任意卷积网络的前向过程中,为特征图提供全局信息指导,提高卷积网络的表达能力。

Patent Agency Ranking