-
公开(公告)号:CN113807422B
公开(公告)日:2024-05-31
申请号:CN202111042055.5
申请日:2021-09-07
Applicant: 南京邮电大学
IPC: G06V10/74 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08 , G06F17/16
Abstract: 本发明提供了一种融合多特征信息的加权图卷积神经网络评分预测模型,建立加权图卷积神经网络用户模型,输出用户潜在特征向量矩阵;建立加权图卷积神经网络用户模型,输出项目潜在特征向量矩阵;将用户潜在特征向量矩阵和项目潜在特征向量矩阵进行连接后输入到评分预测模型多层感知机中,将得到的预测评分与实际评分对比,通过优化函数对评分预测模型多层感知机进行优化,更新函数。本发明通过计算用户与用户、项目与项目之间的属性相似度来利用用户和项目的辅助信息,同时考虑了用户的兴趣变化对评分信息进行修正,增强了用户和项目的特征表示,解决现有的推荐模型仅利用用户项目的交互信息而忽略了用户和项目的自身属性特征的缺点。
-
公开(公告)号:CN113807422A
公开(公告)日:2021-12-17
申请号:CN202111042055.5
申请日:2021-09-07
Applicant: 南京邮电大学
Abstract: 本发明提供了一种融合多特征信息的加权图卷积神经网络评分预测模型,建立加权图卷积神经网络用户模型,输出用户潜在特征向量矩阵;建立加权图卷积神经网络用户模型,输出项目潜在特征向量矩阵;将用户潜在特征向量矩阵和项目潜在特征向量矩阵进行连接后输入到评分预测模型多层感知机中,将得到的预测评分与实际评分对比,通过优化函数对评分预测模型多层感知机进行优化,更新函数。本发明通过计算用户与用户、项目与项目之间的属性相似度来利用用户和项目的辅助信息,同时考虑了用户的兴趣变化对评分信息进行修正,增强了用户和项目的特征表示,解决现有的推荐模型仅利用用户项目的交互信息而忽略了用户和项目的自身属性特征的缺点。
-