-
公开(公告)号:CN111860151A
公开(公告)日:2020-10-30
申请号:CN202010532746.2
申请日:2020-06-12
Applicant: 南京邮电大学
Abstract: 本发明公开了一种无监督跨角度面部表情图像识别方法,将由正脸表情图像训练得到的分类器迁移到侧脸图像域,实现侧脸表情图像的高精度识别。本方法是一种深度神经网络,称为无监督跨角度面部表情自适应网络。该网络使用两个生成对抗网络进行正脸图像和侧脸图像的循环生成,这种机制建立了两个对应的编码-解码对,完成由图像到高层语义特征再到图像的变换,从而得到表情图像的高维特征。正脸图像和侧脸图像在特征空间的分布差异要远小于两者在图像空间的分布差异,本方法在两者的特征空间进行半监督学习,完成由正脸图像分类向侧脸图像的领域自适应。此外,本发明还使用了合成侧脸图像质量评估,域平均脸和乒乓螺旋上升训练等技巧。
-
公开(公告)号:CN111860151B
公开(公告)日:2022-08-26
申请号:CN202010532746.2
申请日:2020-06-12
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/774 , G06V10/764 , G06N3/08
Abstract: 本发明公开了一种无监督跨角度面部表情图像识别方法,将由正脸表情图像训练得到的分类器迁移到侧脸图像域,实现侧脸表情图像的高精度识别。本方法是一种深度神经网络,称为无监督跨角度面部表情自适应网络。该网络使用两个生成对抗网络进行正脸图像和侧脸图像的循环生成,这种机制建立了两个对应的编码‑解码对,完成由图像到高层语义特征再到图像的变换,从而得到表情图像的高维特征。正脸图像和侧脸图像在特征空间的分布差异要远小于两者在图像空间的分布差异,本方法在两者的特征空间进行半监督学习,完成由正脸图像分类向侧脸图像的领域自适应。此外,本发明还使用了合成侧脸图像质量评估,域平均脸和乒乓螺旋上升训练等技巧。
-