-
公开(公告)号:CN112086146A
公开(公告)日:2020-12-15
申请号:CN202010854913.5
申请日:2020-08-24
Applicant: 南京邮电大学
Abstract: 本发明提供一种基于深度参数迁移学习的小分子药物虚拟筛选方法及装置,包括:分子指纹表示数据集中的配体样本特征;基于组稀疏学习进行特征选择,得到关键子结构;基于深度参数迁移学习的配体小分子的活性预测。本发明先通过训练样本丰富的相似药物靶标训练出好的深度学习模型,根据相似的药物靶标容易拟合到相似的深度学习模型的假设,利用刚学习好的模型参数对目标药物靶标的深度学习模型进行初始化,最后利用目标药物靶标有限的训练样本对模型进行优化更新。基于深度参数迁移学习的方法可以用来尝试解决药物虚拟筛选训练数据集中配体样本不足的问题,其对新靶标的虚拟筛选、理解配体与靶标相互作用和对配体分子的优化具有潜在的应用价值。