-
公开(公告)号:CN113705582B
公开(公告)日:2022-03-29
申请号:CN202110891468.4
申请日:2021-08-04
Applicant: 南京林业大学
Abstract: 本发明公开了一种建筑立面边缘特征关键点提取方法,属于三维建模领域。本发明首先通过对局部邻域内建立的协方差矩阵的特征值来计算三维点云中每个点的置信度;然后定义三维空间中每个点的梯度,再将三维点云的梯度信息编码为结构张量;结构张量的特征值可以表示局部点云的梯度分布情况,从而将建筑物点云的立面特征提取问题转换为分析结构张量的三个特征值的问题;将每个点的置信度和结构张量作为双阈值法的输入,判断当前被处理点是否为关键点;最后采用边缘细化算法对边缘特征点进行细化处理。本发明所提出的算法不仅精度高于现有直接从三维中提取边缘特征的方法,也优于基于Canny算子到二维图像进行边缘提取和细化的方法。
-
公开(公告)号:CN113705582A
公开(公告)日:2021-11-26
申请号:CN202110891468.4
申请日:2021-08-04
Applicant: 南京林业大学
Abstract: 本发明公开了一种建筑立面边缘特征关键点提取方法,属于三维建模领域。本发明首先通过对局部邻域内建立的协方差矩阵的特征值来计算三维点云中每个点的置信度;然后定义三维空间中每个点的梯度,再将三维点云的梯度信息编码为结构张量;结构张量的特征值可以表示局部点云的梯度分布情况,从而将建筑物点云的立面特征提取问题转换为分析结构张量的三个特征值的问题;将每个点的置信度和结构张量作为双阈值法的输入,判断当前被处理点是否为关键点;最后采用边缘细化算法对边缘特征点进行细化处理。本发明所提出的算法不仅精度高于现有直接从三维中提取边缘特征的方法,也优于基于Canny算子到二维图像进行边缘提取和细化的方法。
-