-
公开(公告)号:CN106126816B
公开(公告)日:2019-04-05
申请号:CN201610467713.8
申请日:2016-06-24
Applicant: 南京林业大学
IPC: G06F17/50
Abstract: 本发明是一种重复建筑自动感知下的大规模ALS建筑点云建模方法,包括以下步骤:(一)采用深度学习方法,精细分割ALS点云,获取“建筑”、“植被”、“地面”和“其他”四类目标;(二)针对建筑点云,在局部区域内探测重复建筑,并对探测出的重复建筑配准和对齐,接着采用数据驱动方法,构建重复建筑屋顶模型,针对剩余的非重复建筑,采取综合数据驱动和模型驱动的混合建模方法,构建建筑屋顶的几何模型;(三)定性和定量评价建筑屋顶几何模型建模方法的精度和效率。优点:1)建模的效率和精度高,适合对重复建筑较多的城市居民区进行建模。2)方便与其他方法整合,以提升建模方法的应用范围和模型的层次细节。
-
公开(公告)号:CN106126816A
公开(公告)日:2016-11-16
申请号:CN201610467713.8
申请日:2016-06-24
Applicant: 南京林业大学
IPC: G06F17/50
CPC classification number: G06F17/5004
Abstract: 本发明是一种重复建筑自动感知下的大规模ALS建筑点云建模方法,包括以下步骤:(一)采用深度学习方法,精细分割ALS点云,获取“建筑”、“植被”、“地面”和“其他”四类目标;(二)针对建筑点云,在局部区域内探测重复建筑,并对探测出的重复建筑配准和对齐,接着采用数据驱动方法,构建重复建筑屋顶模型,针对剩余的非重复建筑,采取综合数据驱动和模型驱动的混合建模方法,构建建筑屋顶的几何模型;(三)定性和定量评价建筑屋顶几何模型建模方法的精度和效率。优点:1)建模的效率和精度高,适合对重复建筑较多的城市居民区进行建模。2)方便与其他方法整合,以提升建模方法的应用范围和模型的层次细节。
-