-
公开(公告)号:CN106909970A
公开(公告)日:2017-06-30
申请号:CN201710029955.3
申请日:2017-01-12
Applicant: 南京大学
IPC: G06N3/063
Abstract: 本发明公开了一种基于近似计算的二值权重卷积神经网络硬件加速器的计算模块。硬件加速器的计算模块可接收输入神经元以及二值卷积核(权重)并进行快速的卷积乘累加计算。计算模块使用补码数据表示形式,主要包含了优化的近似二值乘法器,一个压缩器树,创新的近似加法器及用于串行地累加部分和的暂存器。除此之外,针对优化的二值近似乘法器,提出了两种误差补偿方案,能在极少增加硬件资源开销的前提下使二值近似乘法器带来的误差得到降低或完全消除。本发明通过优化的计算单元,能够使使用该计算模块的二值权重卷积神经网络硬件加速器的关键路径大大缩短,并减少了面积损耗和功耗,适用于需要使用卷积神经网络的低功耗嵌入式系统。
-
公开(公告)号:CN106875011A
公开(公告)日:2017-06-20
申请号:CN201710032864.5
申请日:2017-01-12
Applicant: 南京大学
IPC: G06N3/063
Abstract: 本发明公开了一种用于二值权重卷积神经网络加速器的硬件架构及其计算流程。其中,硬件架构包含以下部分:三个双端片上静态随机存储器,分别用于缓存输入神经元以及一个卷积层的二值权重;四个卷积处理单元,能够根据计算流程控制其中的运算部件完成主要的卷积计算操作;一个特征映射累积单元以及一个卷积累加阵列,用于进一步处理卷积处理单元的运算结果,以得到最终正确的输出神经元的值。整个设计通过动态随机存储器接口与片外存储器交换数据。除了硬件架构以外,本发明还包含了一个对该硬件架构优化了的,以四行输入特征映射为一次完整计算单位的详细计算流程。本发明最大化的复用了输入数据,尽可能的消除了片外存储器的访问,能够有效降低进行深度二值卷积神经网络计算的功耗,且能够支持深层网络,是一种可用于视觉应用的嵌入式系统的合理方案。
-