-
公开(公告)号:CN113449737B
公开(公告)日:2023-11-17
申请号:CN202110583899.4
申请日:2021-05-27
Applicant: 南京大学
IPC: G06V10/30 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于自编码器的单探头声学成像方法及装置,首先,构建基于自编码器的超宽频单探头成像系统;将预先获取的图像数据分为训练集和测试集;其次,初始化超构神经网络和深度神经网络的参数;然后,将训练集中的图片输入到成像系统,通过变换N次超构神经网络的参数来得到N个声强值;将N个声强值输入到深度神经网络中以取得重建的图像;最后,计算重建图像与原图像的损失函数,并用梯度下降法更新声学超构神经网络和深度神经网络的参数,直到测试集的损失函数的值趋于稳定。本发明突破传统成像机制中对于高分辨率传感器阵列或者声场扫描的依赖,将其转换为对超构神经网络的亚波长超材料单元的依赖,降低传感器的工艺要求和成本。
-
公开(公告)号:CN113449737A
公开(公告)日:2021-09-28
申请号:CN202110583899.4
申请日:2021-05-27
Applicant: 南京大学
Abstract: 本发明公开了一种基于自编码器的单探头声学成像方法及装置,首先,构建基于自编码器的超宽频单探头成像系统;将预先获取的图像数据分为训练集和测试集;其次,初始化超构神经网络和深度神经网络的参数;然后,将训练集中的图片输入到成像系统,通过变换N次超构神经网络的参数来得到N个声强值;将N个声强值输入到深度神经网络中以取得重建的图像;最后,计算重建图像与原图像的损失函数,并用梯度下降法更新声学超构神经网络和深度神经网络的参数,直到测试集的损失函数的值趋于稳定。本发明突破传统成像机制中对于高分辨率传感器阵列或者声场扫描的依赖,将其转换为对超构神经网络的亚波长超材料单元的依赖,降低传感器的工艺要求和成本。
-