用于对图像进行分割处理的方法、装置及计算机可读介质

    公开(公告)号:CN118196406B

    公开(公告)日:2025-03-04

    申请号:CN202410163502.X

    申请日:2024-02-05

    Abstract: 本申请提供了一种用于对图像进行分割处理的方法、装置及计算机可读介质。根据本申请的方法包括:获取待处理的目标图像,所述目标图像包含多个目标对象;通过使用目标分割模型和目标聚类算法来对目标图像中包含的各个目标对象进行分割处理;生成所述目标图像的分割结果信息。本申请通过结合分割模型和聚类算法来对图像中彼此交叠的细长结构的对象进行图像分割处理,并达到优异的图像分割效果;并且,根据本申请实施例的方法,通过结合分割模型和聚类算法来在精子检测的场景中对精子显微照片进行图像分割处理,准确识别和分割彼此交叠的精子尾部,整个过程无需人工参与,实现了精子自动分割,极大地提升了对显微照片中的精子进行分割的效率。

    一种基于多周期分歧的长时间序列预测集成学习装置

    公开(公告)号:CN118627645A

    公开(公告)日:2024-09-10

    申请号:CN202410708183.6

    申请日:2024-06-03

    Applicant: 南京大学

    Abstract: 本发明公开一种针对长时间序列预测精度不足问题的基于多周期分歧的长时间序列预测集成学习装置;序列分解模块收集处理时间序列数据,划分好训练和待预测数据,对序列指定多个周期进行多轮分解。子模型训练模块在这些不同尺度分解后的数据上,训练多个不同的子模型。集成学习模块对子模型进行集成,识别多周期分解后预测性能走势之间的分歧,选择那些在长序列的部分维度上预测表现最好的模型,并将他们拼接在一起,完成基于多周期分歧的集成,提升长序列预测的精度。本发明可以解决长序列预测问题的长距离依赖难以提取和累计误差问题,并且本发明的使用不受具体预测的模型结构影响,在实施过程中应用面广、适用性强、精度提升效果好。

Patent Agency Ranking