一种基于D3PG模型的任务分解与卸载方法

    公开(公告)号:CN117172302A

    公开(公告)日:2023-12-05

    申请号:CN202310588721.8

    申请日:2023-05-24

    Abstract: 本发明公开了一种基于D3PG模型的任务分解与卸载方法,该方法首先建立一种新的深度强化学习模型DRL,即狄利克雷策略梯度深度确定性模型D3PG,并给出模型的奖励机制。其次对模型进行训练:设置学习环境并创建一个经验应答缓冲区用于收集深度强化学习模型DRL代理与MEC环境交互所收集到的训练数据;深度强化学习模型DRL代理与环境进行交互以生成训练数据集;代理从经验缓冲区中提取训练数据来训练深度强化学习模型DRL模型内的学习网络。最后,利用训练好的狄利克雷策略梯度深度确定性模型D3PG深度学习模型实现联合优化任务分解和计算卸载。本发明能够以端到端的方式优化多个目标,最大化处理任务的数量的同时实现最小化能源消耗。

Patent Agency Ranking