一种鸟鸣声分类识别方法及装置
    1.
    发明公开

    公开(公告)号:CN115762533A

    公开(公告)日:2023-03-07

    申请号:CN202211343564.6

    申请日:2022-10-31

    Abstract: 本发明公开了一种鸟鸣声分类识别方法及装置,包括:获取鸟鸣声音频数据;对鸟鸣声音频数据进行预处理,得到预处理后的音频数据;对预处理后的音频数据进行傅里叶变换,得到鸟鸣声的语谱图;基于梅尔频率倒谱系数和差分运算得到预处理后的音频数据的MFCC混合特征向量;利用CNN网络处理语谱图,训练后得到局部细粒度频谱特征;利用Transformer编码器网络处理MFCC混合特征向量,训练后得到兼顾上下文的全局序列特征;将局部细粒度频谱特征与全局序列特征拼接融合后通过Softmax分类器得到鸟鸣声的识别分类结果。本发明能够提高鸟声分类识别准确率。

    一种结合注意力机制与CRNN的脑电情感识别方法

    公开(公告)号:CN116035577A

    公开(公告)日:2023-05-02

    申请号:CN202310057960.0

    申请日:2023-01-14

    Abstract: 本发明提供一种结合注意力机制与CRNN的脑电情感识别方法,涉及脑电情感识别领域。该结合注意力机制与CRNN的脑电情感识别方法,首先对输入的原始脑电信号进行基线去除以及分窗切片预处理。然后通过基于空间注意力的卷积神经网络(CNN)提取脑电数据的空间特征,并通过基于自注意力的循环神经网络(RNN)提取出时间序列信息。最后将两者相结合用于跨被试脑电情感识别。实验结果表明该方法能够从原始脑电信号中提取出更有辨识性的特征,在两个公开的脑电数据集DEAP和DREAMER上取得了89.29%和93.81%的平均分类准确率,相较于其他方法来说分类效果有了明显的提高。

Patent Agency Ranking