-
公开(公告)号:CN113378243B
公开(公告)日:2023-09-29
申请号:CN202110792988.X
申请日:2021-07-14
Applicant: 南京信息工程大学
IPC: G06F21/64 , G06F18/214 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多头注意力机制的个性化联邦学习方法,其特征在于包含以下步骤:步骤一:搭建联邦学习局部模型多头注意力机制模型:将多头注意力机制用于最经典的卷积神经网络中,通过多头注意力机制,保留关键信息,更好地进行特征提取和选择,提高识别的准确性;步骤二:搭建联邦学习全局模型多头注意力机制模型:考虑到各个局部模型的个性化问题对全局模型的影响,在将全局模型参数发送给局部模型时,根据模型的个性化特性做出相应变化。本发明可以考虑到提取特征的相关性,以及考虑到各个客户端合理的个性化带来的数据差异性的方法,能够在保证准确率提高的基础上,增加数据的个性化程度。
-
公开(公告)号:CN113378243A
公开(公告)日:2021-09-10
申请号:CN202110792988.X
申请日:2021-07-14
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于多头注意力机制的个性化联邦学习方法,其特征在于包含以下步骤:步骤一:搭建联邦学习局部模型多头注意力机制模型:将多头注意力机制用于最经典的卷积神经网络中,通过多头注意力机制,保留关键信息,更好地进行特征提取和选择,提高识别的准确性;步骤二:搭建联邦学习全局模型多头注意力机制模型:考虑到各个局部模型的个性化问题对全局模型的影响,在将全局模型参数发送给局部模型时,根据模型的个性化特性做出相应变化。本发明可以考虑到提取特征的相关性,以及考虑到各个客户端合理的个性化带来的数据差异性的方法,能够在保证准确率提高的基础上,增加数据的个性化程度。
-
公开(公告)号:CN112819413B
公开(公告)日:2023-06-20
申请号:CN202110204009.4
申请日:2021-02-24
Applicant: 南京信息工程大学
IPC: G06Q10/0835 , G06Q30/0601 , G06Q10/04 , G06Q10/0631 , G06Q10/0639
Abstract: 本发明公开了一种适用于即时物流的配送改进算法,包括以下步骤:依据骑手工作站为工作的中心点,设定骑手工作中心站点位置及骑手工作位置,计算骑手距离中心站点的位置,定义骑手工作区域;依据不同延时因素引入时间延迟,确定骑手的动态位置变化;获取关于订单及历史订单配送结果的历史数据集;将影响订单派送的因素作为参数引入多目标动态优化算法;利用降维代价函数,在参数上加上权重,定义各骑手的配送效率值;求得每个参数的权重,选择最优效率值得骑手进行订单派送。本发明就被动式派单方法进行改进,增加骑手的实时地理位置,根据平台的后台配送数据,根据骑手的实时位置信息来优化系统,选择最佳配送人员派单,提高了订单配送效率。
-
公开(公告)号:CN112819413A
公开(公告)日:2021-05-18
申请号:CN202110204009.4
申请日:2021-02-24
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种适用于即时物流的配送改进算法,包括以下步骤:依据骑手工作站为工作的中心点,设定骑手工作中心站点位置及骑手工作位置,计算骑手距离中心站点的位置,定义骑手工作区域;依据不同延时因素引入时间延迟,确定骑手的动态位置变化;获取关于订单及历史订单配送结果的历史数据集;将影响订单派送的因素作为参数引入多目标动态优化算法;利用降维代价函数,在参数上加上权重,定义各骑手的配送效率值;求得每个参数的权重,选择最优效率值得骑手进行订单派送。本发明就被动式派单方法进行改进,增加骑手的实时地理位置,根据平台的后台配送数据,根据骑手的实时位置信息来优化系统,选择最佳配送人员派单,提高了订单配送效率。
-
公开(公告)号:CN114998525B
公开(公告)日:2025-05-06
申请号:CN202210703550.4
申请日:2022-06-21
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于动态局部‑全局图卷积神经网络的动作识别方法,利用注意力机制为三个分区策略下的邻接矩阵动态的分配权重,并将这三个邻接矩阵加权得到可学习的变换矩阵,不同的权重参数编码了在空间维度上不同的特征,增加了在骨骼图中特征建模的表达能力;通过使用改进的Transformer自我注意力来融合局部和全局信息;引入通道注意力,使模型更加关注重要的通道特征,进一步提高了模型的性能,使分类预测结果更加准确。本发明增加了特征建模的表达能力,并通过通道注意力模块有效地增强对更重要的特征信息提取能力,从而大幅提高了动作识别的准确率。
-
公开(公告)号:CN113688765B
公开(公告)日:2023-06-27
申请号:CN202111011985.4
申请日:2021-08-31
Applicant: 南京信息工程大学
IPC: G06V40/20 , G06V10/40 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/042 , G06N3/045 , G06N3/084
Abstract: 本发明公开了一种基于注意力机制的自适应图卷积网络的动作识别方法,涉及动作识别技术领域。该动作识别方法将注意力机制加入自适应图卷积网络中,引入时间注意力模块来克服卷积算子的局部性,使每个单个关节被认为是独立的,并且通过比较同一身体关节沿着时间维度的嵌入变化来计算帧之间的相关性,来提高对时间信息提取;另外引入通道注意力模块,使网络更加关注重要的通道特征,进一步提高了网络的性能,使分类预测结果更加准确。
-
公开(公告)号:CN114998525A
公开(公告)日:2022-09-02
申请号:CN202210703550.4
申请日:2022-06-21
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于动态局部‑全局图卷积神经网络的动作识别方法,利用注意力机制为三个分区策略下的邻接矩阵动态的分配权重,并将这三个邻接矩阵加权得到可学习的变换矩阵,不同的权重参数编码了在空间维度上不同的特征,增加了在骨骼图中特征建模的表达能力;通过使用改进的Transformer自我注意力来融合局部和全局信息;引入通道注意力,使模型更加关注重要的通道特征,进一步提高了模型的性能,使分类预测结果更加准确。本发明增加了特征建模的表达能力,并通过通道注意力模块有效地增强对更重要的特征信息提取能力,从而大幅提高了动作识别的准确率。
-
公开(公告)号:CN113688765A
公开(公告)日:2021-11-23
申请号:CN202111011985.4
申请日:2021-08-31
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于注意力机制的自适应图卷积网络的动作识别方法,涉及动作识别技术领域。该动作识别方法将注意力机制加入自适应图卷积网络中,引入时间注意力模块来克服卷积算子的局部性,使每个单个关节被认为是独立的,并且通过比较同一身体关节沿着时间维度的嵌入变化来计算帧之间的相关性,来提高对时间信息提取;另外引入通道注意力模块,使网络更加关注重要的通道特征,进一步提高了网络的性能,使分类预测结果更加准确。
-
-
-
-
-
-
-