一种移动边缘计算网络的任务中继卸载方法

    公开(公告)号:CN112468568B

    公开(公告)日:2024-04-23

    申请号:CN202011318708.3

    申请日:2020-11-23

    Abstract: 本发明公开了一种移动边缘计算网络的任务中继卸载方法,包括集成了毫米波和频率低于6GHz电磁波(Sub‑6GHz)的移动边缘计算网络,Sub‑6GHz实现用户设备的全覆盖,设置基站和用户设备预先执行了波束训练和对齐机制,因此能够在建立数据连接时配置适当的波束。由于每个用户设备都是独立的个体,因此,采用平均场博弈MFG的框架最大程度的减少功耗,针对MFG优化方法的限制,将公式化的MFG简化为马尔可夫决策过程MDP,利用MDP优化问题求得MFG的均衡解,即通过采用强化学习框架,最大化CUs的价值函数,在强化学习的指导下得到均衡解,实现任务的成功卸载,并减少系统能耗。

    一种基于Actor-Critic算法的多智能体异构网络资源优化方法

    公开(公告)号:CN114585004B

    公开(公告)日:2023-04-25

    申请号:CN202210202761.X

    申请日:2022-03-03

    Abstract: 本发明公开了一种基于Actor‑Critic算法的多智能体异构网络能效优化方法,把异构网络中各个小基站看作为一个智能体,令每个小基站基于Actor‑Critic算法中actor网络根据当前异构网络环境和智能体状态选择合适的动作,通过Critic网络采用策略梯度方法更新其网络参数,对智能体传入动作返回q值给出评价并传递给atcor网络,不断学习更新其网络参数选取最优动作,扩展小基站的连接覆盖范围,使用户能连接到最近的小基站,并将当前时刻的状态信息传递给宏基站,在宏基站覆盖范围内重复部署小基站,使宏基站覆盖盲点的设备连接到相应的小基站以获得更好的信道,还可以将连接到宏基站的一部分设备卸载到相应的小基站,在实现网络负载均衡的同时还能增大网络的系统容量。

    一种基于LDPC码的分组信息更新的传输方法

    公开(公告)号:CN112350737A

    公开(公告)日:2021-02-09

    申请号:CN202011319358.2

    申请日:2020-11-23

    Abstract: 本发明公开了一种基于LDPC码的分组信息更新的传输方法,包括如下步骤:对变量节点进行分组;计算变量分组更新前后的矢量距离;得到矢量距离最大的变量分组,将其信息传递给相应的校验节点;更新获得信息的校验节点的信息,并传递给相应的变量节点;将更新后的变量分组矢量距离值归0;继续计算变量分组更新前后的矢量距离直至满足迭代停止的条件;迭代停止,译码输出。本发明提供的一种基于LDPC码的分组信息更新的传输方法克服了目前单个节点SS模式存在的纠高阶调制比特错误的能力较弱、未考虑节点之间的信息关联不足的缺陷,同时实现加快收敛速度,提高译码性能。

    一种利用强化学习优化异构网络资源的方法

    公开(公告)号:CN112188600A

    公开(公告)日:2021-01-05

    申请号:CN202011002522.7

    申请日:2020-09-22

    Abstract: 本发明公开了一种利用强化学习优化异构网络资源的方法,属于通信技术领域,本发明集成强化学习和凸优化理论,提出根据动作的相关性,即ABS,CRE和小基站休眠策略,对动作空间进行分割,针对强化学习建模过程中系统能效作为奖励函数值数量级过大问题,重新设计奖励函数值先取负数再取倒数,作为新的奖励函数值。本发明减小强化学习的动作空间,凸优化理论可以保证系统收敛性,同时加快强化学习的收敛速度;通过仿真实验可以证明该方法具有收敛性,更低的复杂度,在几乎达到系统能效理论值的前提下,与传统表格类型的Q‑Learning相比,收敛速度提升60%。

    一种基于LDPC码的分组信息更新的传输方法

    公开(公告)号:CN112350737B

    公开(公告)日:2023-12-12

    申请号:CN202011319358.2

    申请日:2020-11-23

    Abstract: 本发明公开了一种基于LDPC码的分组信息更新的传输方法,包括如下步骤:对变量节点进行分组;计算变量分组更新前后的矢量距离;得到矢量距离最大的变量分组,将其信息传递给相应的校验节点;更新获得信息的校验节点的信息,并传递给相应的变量节点;将更新后的变量分组矢量距离值归0;继续计算变量分组更新前后的矢量距离直至满足迭代停止的条件;迭代停止,译码输出。本发明提供的一种基于LDPC码的分组信息更新的传输方法克服了目前单个节点SS模式存在的纠高阶调制比特错误的能力较弱、未考虑节点之间的信息关联不足的缺陷,同时实现加快收敛速度,提高译码性能。

Patent Agency Ranking