-
公开(公告)号:CN110335270A
公开(公告)日:2019-10-15
申请号:CN201910614536.5
申请日:2019-07-09
Applicant: 华北电力大学(保定)
Abstract: 本发明公开了基于层级区域特征融合学习的输电线路缺陷检测方法,包括:构建和调取Faster R-CNN模型;将主干网络提取的目标特征通过RPN网络回归得到目标区域;通过对输入图像进行RoI pooling操作产生局部层级区域特征,通过深度选择网络学习产生特征融合所需要的权重将深层特征区域和浅层特征区域融合;并通过分类网络和回归网络产生最后的预测结果。本发明利用深度选择网络产生自学习的区域特征融合权重,节省调整参数的时间,并使模型学习得到的融合特征能够较好地适应不同复杂情况下的缺陷检测任务,深度模型使用区域特征进行预测,强化模型对提取目标局部特征的学习能力,降低了模型在实际环境中因输电线路缺陷图像的复杂背景和类间差异产生的误检问题。
-
公开(公告)号:CN110335270B
公开(公告)日:2022-09-13
申请号:CN201910614536.5
申请日:2019-07-09
Applicant: 华北电力大学(保定) , 山东大学 , 浙江大华技术股份有限公司 , 智洋创新科技股份有限公司 , 南瑞集团有限公司
IPC: G06T7/00 , G06V10/46 , G06V10/25 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08 , G01N21/88 , G01R31/08
Abstract: 本发明公开了基于层级区域特征融合学习的输电线路缺陷检测方法,包括:构建和调取Faster R‑CNN模型;将主干网络提取的目标特征通过RPN网络回归得到目标区域;通过对输入图像进行RoI pooling操作产生局部层级区域特征,通过深度选择网络学习产生特征融合所需要的权重将深层特征区域和浅层特征区域融合;并通过分类网络和回归网络产生最后的预测结果。本发明利用深度选择网络产生自学习的区域特征融合权重,节省调整参数的时间,并使模型学习得到的融合特征能够较好地适应不同复杂情况下的缺陷检测任务,深度模型使用区域特征进行预测,强化模型对提取目标局部特征的学习能力,降低了模型在实际环境中因输电线路缺陷图像的复杂背景和类间差异产生的误检问题。
-
公开(公告)号:CN111179262B
公开(公告)日:2024-09-06
申请号:CN202010002183.6
申请日:2020-01-02
Applicant: 国家电网有限公司 , 国网河北省电力有限公司检修分公司 , 华北电力大学(保定)
IPC: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种结合形状属性的电力巡检图像金具检测方法,其包括以下步骤,1全局特征提取:用图像分类网络VGG‑16提取全局特征;2感兴趣区域获取:将提取的全局特征输入区域建议网络;3分别进行分类预测和边界框分布预测;4损失函数计算:分类损失计算、结合形状属性的KL散度边界框回归损失计算;5模型训练。本发明通过将KL散度和同类别金具目标的形状特征相结合对Faster R‑CNN模型的回归损失函数进行约束,解决在复杂背景中对金具目标的检测框定位不准确、部分金具目标在图像中结构显示不完整的问题。
-
公开(公告)号:CN111179262A
公开(公告)日:2020-05-19
申请号:CN202010002183.6
申请日:2020-01-02
Applicant: 国家电网有限公司 , 国网河北省电力有限公司检修分公司 , 华北电力大学(保定)
Abstract: 本发明涉及一种结合形状属性的电力巡检图像金具检测方法,其包括以下步骤,1全局特征提取:用图像分类网络VGG-16提取全局特征;2感兴趣区域获取:将提取的全局特征输入区域建议网络;3分别进行分类预测和边界框分布预测;4损失函数计算:分类损失计算、结合形状属性的KL散度边界框回归损失计算;5模型训练。本发明通过将KL散度和同类别金具目标的形状特征相结合对Faster R-CNN模型的回归损失函数进行约束,解决在复杂背景中对金具目标的检测框定位不准确、部分金具目标在图像中结构显示不完整的问题。
-
-
-