-
公开(公告)号:CN116994295A
公开(公告)日:2023-11-03
申请号:CN202311256034.2
申请日:2023-09-27
Applicant: 华侨大学
Abstract: 本发明公开了一种基于灰度样本自适应选择门的野生动物类别识别方法,涉及机器视觉技术领域,利用灰度图像作为辅助模态来缓解可见光图像和红外光图像之间的模态差异。具体地说,本发明以可见光图像和灰度图像之间在特征空间中的差异来模拟可见光图像和红外光图像的模态差异,设计一种基于神经网络的自适应选择门模块,从可见光图像和灰度图像的特征差异中学习出灰度图像的重要性,用于合理控制灰度图像参与模型鉴别性训练的程度,解决因白天可见光图像与夜晚红外光图像之间模态跨度变化大,导致计算机对野生动物难以准确识别的问题,从而提升野生动物的识别率。因此,本发明可广泛应用于智慧生态以及动物保护等场景中的智能视频分析系统。
-
公开(公告)号:CN117315430B
公开(公告)日:2024-03-12
申请号:CN202311595144.1
申请日:2023-11-28
Applicant: 华侨大学
IPC: G06V10/80 , G06V10/764 , G06V10/82
Abstract: 本发明一种面向大范围车辆再辨识的不完备模态特征融合方法,涉及图像处理技术领域,包括:训练包括三通道模型和单通道模型的双模态模型,对可见光车辆图像,采用三通道模型提取主特征,辅以图像灰度化,采用单通道模型提取辅助特征;对红外光车辆图像,采用单通道模型提取主特征,辅以通道复制扩展,采用三通道模型提取辅助特征;将主特征和辅特征叠加获得完整特征,利用KL散度优化完整、主、辅特征三者之间后验概率分布差异,优化特征融合效果。本发明能解决在长时间大范围的监控场景中车辆因活动轨迹复杂多变出现的模态不完备问题,即可见光和红外车辆图像不完备而无法直接实现可见光和红外图像的特征融合问题,提升车辆再辨识准确性。
-
公开(公告)号:CN116612439A
公开(公告)日:2023-08-18
申请号:CN202310891061.0
申请日:2023-07-20
Applicant: 华侨大学
IPC: G06V20/52 , G06V40/10 , G06V10/774 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种模态域适应性和特征鉴别性平衡方法及行人再辨识方法,其中的模态域适应性和特征鉴别性平衡方法用于红外光与可见光跨模态行人再辨识。本发明在模态域适应性优化和特征鉴别性优化之间设置一个注意力模块,用模态域适应性优化函数监督注意力模块的掩码学习,并用特征鉴别性优化函数监督注意力模块的反掩码学习,从而借助注意力机制自动平衡模态域适应性和特征鉴别性之间的矛盾,改善特征学习效果,提升红外光与可见光跨模态行人再辨识准确性。本发明可以应用于智能视频监控系统中的行人身份识别、行人轨迹分析等,具有广泛的应用价值。
-
公开(公告)号:CN116128779A
公开(公告)日:2023-05-16
申请号:CN202211687228.3
申请日:2022-12-27
Applicant: 华侨大学 , 厦门亿联网络技术股份有限公司
Abstract: 本发明涉及一种适用于跨模态行人再辨识的随机置色数据增强方法,先对可见光图像随机裁剪局部区域,对所裁剪的局部区域进行随机灰度化变换,以及对红外光图像随机裁剪局部区域,对所裁剪的局部区域进行随机彩色化变换;再将变换后的局部区域替换为原先被裁剪区域,获取随机置色增强可见光和红外光图像用于跨模态行人再辨识步骤。本发明在图像层面上,以轻量计算代价缓解可见光和红外光图像风格差异,从而提升跨模态行人再辨识模型对模态变化的适应能力,进而提升跨模态行人再辨识的准确性。
-
公开(公告)号:CN118397659B
公开(公告)日:2024-10-15
申请号:CN202410828405.8
申请日:2024-06-25
Applicant: 华侨大学
Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。
-
公开(公告)号:CN117373066B
公开(公告)日:2024-03-12
申请号:CN202311667337.3
申请日:2023-12-07
Applicant: 华侨大学
Abstract: 本发明公开了一种基于云边搜索联邦深度学习方法的行人再辨识方法及系统,涉及机器学习技术领域,方法包括以下步骤:S1,云端初始化全局深度网络模型,S2,云端将全局深度网络模型下发给边缘设备;S3,边缘设备利用个性化初始化函数构建总体优化目标函数,进行边缘深度网络模型训练;S4,云端对边缘深度网络模型权重参数进行加权平均聚合以更新云端全局深度网络模型;S5,重复S2至S4至最大次数,将最后一次生成的云端全局深度网络模型作为行人再辨识模型;S6,利用行人再辨识模型实现行人再辨识。本发明在保护数据隐私的前提下,让各个边缘设备根据本地数据特性个性化初始化自身网络,提升联邦学习中边缘深度网络和云端全局深度网络模型的性能。
-
公开(公告)号:CN116612439B
公开(公告)日:2023-10-31
申请号:CN202310891061.0
申请日:2023-07-20
Applicant: 华侨大学
IPC: G06V20/52 , G06V40/10 , G06V10/774 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种模态域适应性和特征鉴别性平衡方法及行人再辨识方法,其中的模态域适应性和特征鉴别性平衡方法用于红外光与可见光跨模态行人再辨识。本发明在模态域适应性优化和特征鉴别性优化之间设置一个注意力模块,用模态域适应性优化函数监督注意力模块的掩码学习,并用特征鉴别性优化函数监督注意力模块的反掩码学习,从而借助注意力机制自动平衡模态域适应性和特征鉴别性之间的矛盾,改善特征学习效果,提升红外光与可见光跨模态行人再辨识准确性。本发明可以应用于智能视频监控系统中的行人身份识别、行人轨迹分析等,具有广泛的应用价值。
-
公开(公告)号:CN116682143A
公开(公告)日:2023-09-01
申请号:CN202310703845.6
申请日:2023-06-14
Applicant: 华侨大学
IPC: G06V40/10 , G06V20/52 , G06V10/24 , G06V10/30 , G06V10/40 , G06V10/774 , G06V10/82 , G06T3/00 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于扩散模型校正鱼眼图像的行人再辨识方法及系统,方法包括:校正步骤,构造一个基于扩散模型的鱼眼行人图像校正网络用于鱼眼行人图像去畸变;模型训练步骤,构造一个双分支深度学习网络,联合使用校正行人图像和鱼眼行人图像训练行人再辨识模型,充分使用行人图像信息提升再辨识精度;再辨识图像获取步骤,使用获取的行人再辨识模型,对查询图像和注册图像进行特征提取,分别选取与查询图像特征距离近的注册图像。本发明能够解决鱼眼镜头下行人图像畸变失真,难以匹配的问题,提高鱼眼图像行人再辨识的准确性和研判观察的视觉舒适性。
-
公开(公告)号:CN119068266A
公开(公告)日:2024-12-03
申请号:CN202411551042.4
申请日:2024-11-01
Applicant: 华侨大学 , 泉州圣源警用侦察设备有限公司
IPC: G06V10/764 , G06V10/74 , G06V10/774 , G06V10/82 , G06V20/52 , G06F17/16
Abstract: 本发明涉及图像处理与目标识别技术领域,公开了一种基于真伪标签一致性的跨模态行人再辨识方法及系统,方法包括:通过深度神经网络对可见光与红外光两种不同模态的行人图像提取特征向量;计算同模态、不同模态间的特征向量相似度,构建同模态、跨模态匹配矩阵,并进行归一化处理,生成同模态和跨模态归一化匹配矩阵;采用跨模态归一化匹配矩阵和同模态归一化匹配矩阵对真实标签进行投影,获得跨模态伪标签;优化真实标签与跨模态伪标签之间的Kullback‑Leibler(KL)散度,从而优化同模态和跨模态匹配矩阵,提升匹配矩阵对模态变化的鲁棒性,从而提升跨模态行人再辨识准确性。
-
公开(公告)号:CN116994295B
公开(公告)日:2024-02-02
申请号:CN202311256034.2
申请日:2023-09-27
Applicant: 华侨大学
Abstract: 本发明公开了一种基于灰度样本自适应选择门的野生动物类别识别方法,涉及机器视觉技术领域,利用灰度图像作为辅助模态来缓解可见光图像和红外光图像之间的模态差异。具体地说,本发明以可见光图像和灰度图像之间在特征空间中的差异来模拟可见光图像和红外光图像的模态差异,设计一种基于神经网络的自适应选择门模块,从可见光图像和灰度图像的特征差异中学习出灰度图像的重要性,用于合理控制灰度图像参与模型鉴别性训练的程度,解决因白天可见光图像与夜晚红外光图像之间模态跨度变化大,导致计算机对野生动物难以准确识别的问(56)对比文件张典;汪海涛;姜瑛;陈星.基于轻量网络的近红外光和可见光融合的异质人脸识别.小型微型计算机系统.2020,(04),全文.
-
-
-
-
-
-
-
-
-