基于小波阈值去噪的主成分分析的工作模态参数识别方法

    公开(公告)号:CN104112072A

    公开(公告)日:2014-10-22

    申请号:CN201410335960.3

    申请日:2014-07-15

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于小波阈值去噪的主成分分析的工作模态参数识别方法,能够有效滤除小阻尼机械结构的振动响应信号中的测量噪声,识别出系统的工作模态(模态固有频率、模态振型),甚至能识别出在响应信号中贡献量小的工作模态(模态固有频率、模态振型),并赋予了PCA模态参数识别算法以及物理意义解释与证明。以及该方法在三维工作模态参数识别中的应用,在设备故障诊断与健康状态监测中的应用。还涉及一种基于所述方法的工作模态参数分析仪,将多个振动传感器布置于机械结构的关键点上,通过对测量得到的振动响应信号进行工作模态参数识别,可以了解系统结构的特性的变化,并将其应用于大型工程结构的故障诊断与健康状态监测中。

    基于小波阈值去噪的主成分分析的工作模态参数识别方法

    公开(公告)号:CN104112072B

    公开(公告)日:2017-04-05

    申请号:CN201410335960.3

    申请日:2014-07-15

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于小波阈值去噪的主成分分析的工作模态参数识别方法,能够有效滤除小阻尼机械结构的振动响应信号中的测量噪声,识别出系统的工作模态(模态固有频率、模态振型),甚至能识别出在响应信号中贡献量小的工作模态(模态固有频率、模态振型),并赋予了PCA模态参数识别算法以及物理意义解释与证明。以及该方法在三维工作模态参数识别中的应用,在设备故障诊断与健康状态监测中的应用。还涉及一种基于所述方法的工作模态参数分析仪,将多个振动传感器布置于机械结构的关键点上,通过对测量得到的振动响应信号进行工作模态参数识别,可以了解系统结构的特性的变化,并将其应用于大型工程结构的故障诊断与健康状态监测中。

Patent Agency Ranking