-
公开(公告)号:CN108490912B
公开(公告)日:2019-08-30
申请号:CN201810204240.1
申请日:2018-03-12
Applicant: 华中科技大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于主元相似性分析的多模态过程模态辨识方法,包括:根据待识别模态的数据集,选取窗口大小、窗口移动的长度和PCA相似性因子的控制限值;将第一个窗口的数据作为初始模态的数据,计算初始模态的相似性指标统计量的控制限值;对于每个窗口,基于主成分分析方法计算两个相似性指标的值;判断当前窗口的模态;当前窗口不属于当前模态时,判断所属新模态类型;当前窗口仍属于当前模态时,把当前窗口的数据并入到当前模态数据内。本发明揭示了不同模态数据之间性质的主要差异在于一阶矩和二阶矩;针对一阶矩的差异,选取T2统计量;针对二阶矩的差异,选取相似性因子。使得本发明的模态辨识方法计算量小,模态辨识的结果准确率高。
-
公开(公告)号:CN108490912A
公开(公告)日:2018-09-04
申请号:CN201810204240.1
申请日:2018-03-12
Applicant: 华中科技大学
IPC: G05B23/02
Abstract: 本发明公开了一种基于主元相似性分析的多模态过程模态辨识方法,包括:根据待识别模态的数据集,选取窗口大小、窗口移动的长度和PCA相似性因子的控制限值;将第一个窗口的数据作为初始模态的数据,计算初始模态的相似性指标统计量的控制限值;对于每个窗口,基于主成分分析方法计算两个相似性指标的值;判断当前窗口的模态;当前窗口不属于当前模态时,判断所属新模态类型;当前窗口仍属于当前模态时,把当前窗口的数据并入到当前模态数据内。本发明揭示了不同模态数据之间性质的主要差异在于一阶矩和二阶矩;针对一阶矩的差异,选取T2统计量;针对二阶矩的差异,选取相似性因子。使得本发明的模态辨识方法计算量小,模态辨识的结果准确率高。
-