一种基于多模型神经网络联合预测放疗结构位置的方法

    公开(公告)号:CN110766693A

    公开(公告)日:2020-02-07

    申请号:CN201910730460.2

    申请日:2019-08-08

    Abstract: 本发明属于医学影像和计算机技术领域,涉及一种基于多模型神经网络联合预测放疗结构位置的方法、设备和存储介质。本发明使用多个不同的模型对同一器官的医学图像进行分割,根据器官在医学影像上下层的跟随性,通过比较不同模型预测出的掩模与上一层掩模质心距离的接近程度来降低小器官分割中掩模的假阴、假阳;通过比较不同模型预测出的掩模与上一层掩模的dice系数的高低程度来降低大器官分割中掩模的假阴、假阳。相比于单模型的调优,本发明通过多模型联合预测放疗结构可以明显的改善上述问题,具有很强的普适性。

    一种基于粗分类的医学影像自动分割方法、设备和存储介质

    公开(公告)号:CN109308477A

    公开(公告)日:2019-02-05

    申请号:CN201811110633.2

    申请日:2018-09-21

    CPC classification number: G06K9/342 G06K9/6227 G06K2209/05

    Abstract: 本发明属于医学影像和计算机技术领域,涉及一种医学影像的自动分割方法、设备和存储介质。该方法包括如下步骤:将医学影像中的器官划分成若干类;训练用于对人体医学影像进行粗分类的深度学习神经网络,使医学影像输入到粗分类深度学习神经网络后判断出其所属的分类类别;将待分类的医学影像输入到训练好的粗分类深度学习神经网络进行粗分类,输出包含感兴趣器官的医学影像层;将包含感兴趣器官的医学影像层输入到与之相匹配的用于对特定感兴趣器官进行分割的精细分割神经网络中,完成对医学影像上的感兴趣器官的精确分割。本发明使放疗结构的自动分割过程能节省分割预测的时间;本发明提供的方法不依赖特定的神经网络,具有很强的普适性。

    一种基于CNN的眼周器官分割方法、设备和存储介质

    公开(公告)号:CN110415252B

    公开(公告)日:2022-08-05

    申请号:CN201810384933.3

    申请日:2018-04-26

    Abstract: 本发明属于医学影像和计算机技术领域,涉及一种基于卷积神经网络的眼周器官的分割方法、设备和存储介质,该方法包括如下步骤:将待分割医学影像输入到训练好的卷积神经二分类网络中,获取医学影像中含有眼睛的横断面;在眼睛横断面中定位眼睛大致区域:分割出头颅后找到眼睛横断面中头颅的中心;根据人体解剖尺寸,通过头颅的中心定位眼睛大致区域;将训练好的用于勾画眼球的卷积神经网络在定位的眼睛大致位置处分割出眼睛勾画眼球;根据眼睛位置结合人体解剖结构,分别定位晶状体、视神经、脑垂体;再通过相应的卷积神经网络分别勾画出晶状体,视神经,脑垂体。

    一种基于神经网络对医学影像中人体器官进行分割的方法

    公开(公告)号:CN109461161A

    公开(公告)日:2019-03-12

    申请号:CN201811227021.1

    申请日:2018-10-22

    Abstract: 本发明属于深度学习和放疗技术领域,涉及一种基于神经网络对医学影像中人体器官进行分割的方法,包括如下步骤:粗定位待勾画目标器官所在的医学影像层,所述的待勾画目标器官包含若干器官;使用3D二分类U型网络确定作为一个整体的待勾画目标器官的起始层与结束层;将起始层与结束层的中间层输入2D的多分类U型网络,进行精细勾画分割,确定各待勾画器官对应的起始层和结束层。本发明使用3D网络以确定多器官作为一个整体时的起始层与结束层,使用2D网络以解决起始层与结束层中间的各器官间数据不平衡问题,通过结合现有3D网络与2D网络的优点,解决了现有技术中对HU值相近的多器官分割问题。

    一种基于神经网络对医学影像中人体器官进行分割的方法

    公开(公告)号:CN110599498A

    公开(公告)日:2019-12-20

    申请号:CN201910728931.6

    申请日:2019-08-08

    Abstract: 本发明属于深度学习和放疗技术领域,涉及一种基于神经网络对医学影像中人体器官进行分割的方法,包括如下步骤:粗定位待勾画目标器官所在的医学影像层,所述的待勾画目标器官包含若干器官;使用3D二分类U型网络确定作为一个整体的待勾画目标器官的起始层与结束层;将起始层与结束层的中间层输入2D的多分类U型网络,进行精细勾画分割,确定各待勾画器官对应的起始层和结束层。本发明使用3D网络以确定多器官作为一个整体时的起始层与结束层,使用2D网络以解决起始层与结束层中间的各器官间数据不平衡问题,通过结合现有3D网络与2D网络的优点,解决了现有技术中对HU值相近的多器官分割问题。

    一种基于神经网络对医学影像中人体器官进行分割的方法

    公开(公告)号:CN110599498B

    公开(公告)日:2023-05-05

    申请号:CN201910728931.6

    申请日:2019-08-08

    Abstract: 本发明属于深度学习和放疗技术领域,涉及一种基于神经网络对医学影像中人体器官进行分割的方法,包括如下步骤:粗定位待勾画目标器官所在的医学影像层,所述的待勾画目标器官包含若干器官;使用3D二分类U型网络确定作为一个整体的待勾画目标器官的起始层与结束层;将起始层与结束层的中间层输入2D的多分类U型网络,进行精细勾画分割,确定各待勾画器官对应的起始层和结束层。本发明使用3D网络以确定多器官作为一个整体时的起始层与结束层,使用2D网络以解决起始层与结束层中间的各器官间数据不平衡问题,通过结合现有3D网络与2D网络的优点,解决了现有技术中对HU值相近的多器官分割问题。

    一种基于多模型神经网络联合预测放疗结构位置的方法

    公开(公告)号:CN110766693B

    公开(公告)日:2022-06-21

    申请号:CN201910730460.2

    申请日:2019-08-08

    Abstract: 本发明属于医学影像和计算机技术领域,涉及一种基于多模型神经网络联合预测放疗结构位置的方法、设备和存储介质。本发明使用多个不同的模型对同一器官的医学图像进行分割,根据器官在医学影像上下层的跟随性,通过比较不同模型预测出的掩模与上一层掩模质心距离的接近程度来降低小器官分割中掩模的假阴、假阳;通过比较不同模型预测出的掩模与上一层掩模的dice系数的高低程度来降低大器官分割中掩模的假阴、假阳。相比于单模型的调优,本发明通过多模型联合预测放疗结构可以明显的改善上述问题,具有很强的普适性。

    一种基于CNN的眼周器官分割方法、设备和存储介质

    公开(公告)号:CN110415252A

    公开(公告)日:2019-11-05

    申请号:CN201810384933.3

    申请日:2018-04-26

    Abstract: 本发明属于医学影像和计算机技术领域,涉及一种基于卷积神经网络的眼周器官的分割方法、设备和存储介质,该方法包括如下步骤:将待分割医学影像输入到训练好的卷积神经二分类网络中,获取医学影像中含有眼睛的横断面;在眼睛横断面中定位眼睛大致区域:分割出头颅后找到眼睛横断面中头颅的中心;根据人体解剖尺寸,通过头颅的中心定位眼睛大致区域;将训练好的用于勾画眼球的卷积神经网络在定位的眼睛大致位置处分割出眼睛勾画眼球;根据眼睛位置结合人体解剖结构,分别定位晶状体、视神经、脑垂体;再通过相应的卷积神经网络分别勾画出晶状体,视神经,脑垂体。

Patent Agency Ranking