-
公开(公告)号:CN113159318B
公开(公告)日:2024-07-12
申请号:CN202110444570.X
申请日:2021-04-23
Applicant: 北京达佳互联信息技术有限公司 , 北京交通大学
IPC: G06N3/08 , G06F18/241 , G06F18/214 , G06N3/0464
Abstract: 本公开关于一种神经网络的量化方法、装置、电子设备及存储介质,涉及计算机技术领域,该方法包括:获取训练样本图像以及该训练样本图像的类型,并将该训练样本图像输入到第一模型,得到预测分类结果;根据该预测分类结果、该训练样本图像的类型、该初始权重以及该初始量化步长,确定第一梯度;基于该第一梯度、该初始量化步长以及该第一模型对应的学习率更新该初始量化步长;基于更新后的量化步长,调整该第一模型中的权重,以得到量化后的模型。本公开中,电子设备能够合理、有效地确定出量化后的模型,即在保障量化后的模型体积较小的同时,提升该量化后的模型的预测准确性。
-
公开(公告)号:CN113159318A
公开(公告)日:2021-07-23
申请号:CN202110444570.X
申请日:2021-04-23
Applicant: 北京达佳互联信息技术有限公司 , 北京交通大学
Abstract: 本公开关于一种神经网络的量化方法、装置、电子设备及存储介质,涉及计算机技术领域,该方法包括:获取训练样本图像以及该训练样本图像的类型,并将该训练样本图像输入到第一模型,得到预测分类结果;根据该预测分类结果、该训练样本图像的类型、该初始权重以及该初始量化步长,确定第一梯度;基于该第一梯度、该初始量化步长以及该第一模型对应的学习率更新该初始量化步长;基于更新后的量化步长,调整该第一模型中的权重,以得到量化后的模型。本公开中,电子设备能够合理、有效地确定出量化后的模型,即在保障量化后的模型体积较小的同时,提升该量化后的模型的预测准确性。
-