-
公开(公告)号:CN113914932A
公开(公告)日:2022-01-11
申请号:CN202010654402.9
申请日:2020-07-08
IPC: E21F17/18
Abstract: 本发明公开了利用震动波断层扫描识别煤与瓦斯突出危险区域的方法,包括以下步骤:步骤1,安装微震监测系统;步骤2,利用微震监测系统采集分析震动波传播信息和震源多维震动信息;步骤3,采用震动波波速信息对煤岩层的断层扫描,利用震动波波速异常系数区域预测应力异常区Q1;利用微震频次、震源集中度等预测地质异常区Q2,采用微震能量、频次等动态识别采掘扰动异常区Q3;步骤4,将Q1、Q2和Q3共同组成煤与瓦斯突出危险区域Q;步骤5,利用突出综合预警指数I综定量化确定煤与瓦斯突出危险区域的危险程度,并进行煤与瓦斯突出危险分级;步骤6,根据不同危险级别制定相应的防治措施。
-
公开(公告)号:CN113914932B
公开(公告)日:2022-10-11
申请号:CN202010654402.9
申请日:2020-07-08
IPC: E21F17/18
Abstract: 本发明公开了利用震动波断层扫描识别煤与瓦斯突出危险区域的方法,包括以下步骤:步骤1,安装微震监测系统;步骤2,利用微震监测系统采集分析震动波传播信息和震源多维震动信息;步骤3,采用震动波波速信息对煤岩层的断层扫描,利用震动波波速异常系数区域预测应力异常区Q1;利用微震频次、震源集中度等预测地质异常区Q2,采用微震能量、频次等动态识别采掘扰动异常区Q3;步骤4,将Q1、Q2和Q3共同组成煤与瓦斯突出危险区域Q;步骤5,利用突出综合预警指数I综定量化确定煤与瓦斯突出危险区域的危险程度,并进行煤与瓦斯突出危险分级;步骤6,根据不同危险级别制定相应的防治措施。
-
公开(公告)号:CN110552740A
公开(公告)日:2019-12-10
申请号:CN201910813907.2
申请日:2019-08-30
IPC: E21F17/18
Abstract: 本发明提供一种煤岩动力灾害危险性区域-局部递进聚焦式探测预警方法,属于煤岩动力灾害防治技术领域。该方法首先采用综合指数法对全矿井范围进行分区分级,确定重点区域;然后对该重点区域应用动态应力场CT反演和微震技术进行区域探测预警和检验,进一步确定局部危险范围;再对该局部危险范围应用电磁辐射法或应力法进行临场实时探测预警和检验;最后,基于上述监测分析结果建立多参量归一化综合预警模型及预警准则。本发明综合运用综合指数法、震动波CT技术、微震技术和应力/电磁辐射监测技术进行煤岩动力灾害危险性的探测预警,实现了煤岩动力灾害的区域-局部逐级聚焦监测预警,能够大幅提高灾害防治的针对性及防治效率。
-
公开(公告)号:CN114109506A
公开(公告)日:2022-03-01
申请号:CN202111427685.4
申请日:2021-11-26
Abstract: 本发明涉及煤矿开采过程矿震风险评估领域,特别是一种用于评估煤矿开采过程覆岩关键层破断导致矿震风险的评估方法,包括如下步骤:计算关键层的理论破断步距及释放能量;评估关键层是否可以破断;评估关键层破断导致的矿震强度;评估矿震对地表的潜在影响;评估矿震对井下的潜在影响。该方法为矿井提供科学评估矿震风险的技术手段,可有效识别矿震风险源和风险等级,进而针对性制定矿震灾害防治措施,最大程度降低矿震风险,减弱甚至消除由矿震诱发的冲击地压灾害,保障矿井安全生产。
-
公开(公告)号:CN113093271B
公开(公告)日:2022-02-15
申请号:CN202110290835.5
申请日:2021-03-18
IPC: G01V1/28
Abstract: 本发明公开了一种利用地质钻孔布置微震传感器进行煤层CT探测的方法,包括:确定煤层探测区域,设计地质钻孔布置方案,从地面向地下施工地质钻孔将探测区域包围;在地质钻孔内布置微震传感器,形成微震监测系统,对探测区域内煤岩破裂产生的微震震源进行定位监测;在探测区域附近从地面向地下施工压裂钻孔或者在探测区域附近的巷道内施工爆破钻孔,形成人工震源并进行定位监测;以人工震源和煤岩破裂产生的微震震源作为激发源,以微震传感器作为接收器,通过激发源与接收器之间形成震动波传播射线进行CT反演,根据反演结果对煤层进行探测。本发明能够在周边缺乏巷道的待探测区域布置微震传感器并实施煤层CT探测,提高了探测结果的可靠性。
-
公开(公告)号:CN113093271A
公开(公告)日:2021-07-09
申请号:CN202110290835.5
申请日:2021-03-18
IPC: G01V1/28
Abstract: 本发明公开了一种利用地质钻孔布置微震传感器进行煤层CT探测的方法,包括:确定煤层探测区域,设计地质钻孔布置方案,从地面向地下施工地质钻孔将探测区域包围;在地质钻孔内布置微震传感器,形成微震监测系统,对探测区域内煤岩破裂产生的微震震源进行定位监测;在探测区域附近从地面向地下施工压裂钻孔或者在探测区域附近的巷道内施工爆破钻孔,形成人工震源并进行定位监测;以人工震源和煤岩破裂产生的微震震源作为激发源,以微震传感器作为接收器,通过激发源与接收器之间形成震动波传播射线进行CT反演,根据反演结果对煤层进行探测。本发明能够在周边缺乏巷道的待探测区域布置微震传感器并实施煤层CT探测,提高了探测结果的可靠性。
-
公开(公告)号:CN114109506B
公开(公告)日:2022-06-17
申请号:CN202111427685.4
申请日:2021-11-26
Abstract: 本发明涉及煤矿开采过程矿震风险评估领域,特别是一种用于评估煤矿开采过程覆岩关键层破断导致矿震风险的评估方法,包括如下步骤:计算关键层的理论破断步距及释放能量;评估关键层是否可以破断;评估关键层破断导致的矿震强度;评估矿震对地表的潜在影响;评估矿震对井下的潜在影响。该方法为矿井提供科学评估矿震风险的技术手段,可有效识别矿震风险源和风险等级,进而针对性制定矿震灾害防治措施,最大程度降低矿震风险,减弱甚至消除由矿震诱发的冲击地压灾害,保障矿井安全生产。
-
公开(公告)号:CN116242881B
公开(公告)日:2025-03-18
申请号:CN202310162829.0
申请日:2023-02-24
Applicant: 中国矿业大学
Abstract: 本发明公开了一种承载煤岩裂纹损伤红外响应信息的热传导温度补偿方法,属于矿山煤岩体损伤破坏的监测预警及保水开采突水灾害防治技术领域。确定承载煤岩红外辐射监测目标区域,设置参照煤岩对承载煤岩红外辐射信息进行时域去噪,提取承载煤岩边界热源的时域变化数据、初始温度场数据及热力学参数;建立COMSOL固体传热数值计算模型,将计算结果导出并转换为时间序列二维矩阵;对COMSOL数值计算结果进行检验,利用有效计算结果对承载煤岩红外辐射响应信息进行热传导温度补偿。其能够有效减弱环境热源对红外辐射变化规律的影响,有助于实现煤岩损伤演化的红外定量表征及破坏前兆的红外精准识别,为水资源保护性采煤和矿井水害防控提供了安全保障。
-
公开(公告)号:CN119223784B
公开(公告)日:2025-02-25
申请号:CN202411315942.9
申请日:2024-09-20
Applicant: 中国矿业大学
IPC: G01N3/313 , G01N3/04 , G01N3/02 , G01N3/06 , B08B15/04 , B08B13/00 , G06F30/27 , G06F18/27 , G06N20/00 , G06F119/14
Abstract: 本发明提供了一种基于三指标的岩爆特征分析方法,以岩石力学单轴压缩试验为对象,计算不同岩石的弹性能量指数、弹性能判据指标、岩屑弹射初始动能。选用皮尔逊相关系数分析各指标之间的相关性,使用随机森林找寻三个指标同破坏状态/程度之间的特征重要性并确定各指标所占权重,提出一个普适的判别岩石破坏程度或者说是岩爆程度的公式,以指导岩石动力学灾害防治工作。适用于岩石力学试验中对岩样破坏情况进行有效评估,并同时做到岩石碎屑弹射飞出的有效接盛,按照特定需要的弹射距离分区域高效收集。
-
公开(公告)号:CN118688716A
公开(公告)日:2024-09-24
申请号:CN202410850990.1
申请日:2024-06-28
Applicant: 山东能源集团有限公司 , 中国矿业大学
Abstract: 本发明属于煤矿安全技术领域,具体涉及一种基于波速区划分的煤矿微震监测系统定位精度提高方法,包括以下步骤:步骤1:在目标矿井布置微震监测系统,在井下和地面布置拾振传感器,并测量出各传感器坐标;步骤2:根据矿井地质和开采技术条件以及震动波在不同区域波速值的不同进行区域划分,根据区域划分结果构建三维波速区划分模型;步骤3:采用放炮震源的方式计算出各波速区波速值;步骤4:首先采用实体区波速V1作为系统各传感器初始波速值对震源进行定位,计算出初始位置0(X0、Y0、Z0);根据震源初始位置和各拾振传感器位置,按照其两者中间所穿过的不同波速区的距离,计算出各传感器波速;步骤5:采用新波速值重新计算震源位置。本发明震源定位更加精确。
-
-
-
-
-
-
-
-
-