一种铁磁性金属纳米颗粒液相生长过程中颗粒粒径的控制方法

    公开(公告)号:CN1799732A

    公开(公告)日:2006-07-12

    申请号:CN200610011278.4

    申请日:2006-01-25

    Abstract: 本发明提供了一种采用液相法生长铁磁性金属纳米颗粒过程中控制颗粒粒径的方法,属于磁性纳米材料技术领域。工艺步骤为:采用液相法,将反应物分成A、B两部分,A置于反应区,而与A不互溶的溶液E置于非反应区,反应区与非反应区将自动分层。在水平施加交变电场和垂直施加静电场和梯度磁场后,加入B开始生成磁性纳米颗粒,其在交变电场作用下振荡,由于垂直方向上方向相反的库仑力和磁力作用,颗粒粒径小时被束缚在反应区中,当粒径超过临界尺度时,磁力吸引颗粒迅速脱离反应区进入非反应区,从而达到控制颗粒粒径的目的。本发明方法的优点是:可以精确地控制磁性纳米颗粒的粒径;适合在科学研究和工业生产中精确控制磁性纳米颗粒粒径的大小。

    一种磁性过渡金属氧化物纳米颗粒液相生长过程中颗粒粒径的控制方法

    公开(公告)号:CN1800027A

    公开(公告)日:2006-07-12

    申请号:CN200610011277.X

    申请日:2006-01-25

    Abstract: 本发明提供了一种采用液相法生长铁磁性金属纳米颗粒过程中控制颗粒粒径的方法,属于磁性纳米材料技术领域。工艺步骤为:采用液相法,将反应物分成A、B两部分,A置于反应区,而与A不互溶的溶液E置于非反应区,反应区与非反应区将自动分层。在水平施加交变电场和垂直施加静电场和梯度磁场后,加入B开始生成磁性纳米颗粒,其在交变电场作用下振荡,由于垂直方向上方向相反的库仑力和磁力作用,颗粒粒径小时被束缚在反应区中,当粒径超过临界尺度时,磁力吸引颗粒迅速脱离反应区进入非反应区,从而达到控制颗粒粒径的目的。本发明方法的优点是:可以精确地控制磁性纳米颗粒的粒径;适合在科学研究和工业生产中精确控制磁性纳米颗粒粒径的大小。

    一种磁性过渡金属氧化物纳米颗粒液相生长过程中颗粒粒径的控制方法

    公开(公告)号:CN100457633C

    公开(公告)日:2009-02-04

    申请号:CN200610011277.X

    申请日:2006-01-25

    Abstract: 本发明提供了一种采用液相法生长铁磁性金属纳米颗粒过程中控制颗粒粒径的方法,属于磁性纳米材料技术领域。工艺步骤为:采用液相法,将反应物分成A、B两部分,A置于反应区,而与A不互溶的溶液E置于非反应区,反应区与非反应区将自动分层。在水平施加交变电场和垂直施加静电场和梯度磁场后,加入B开始生成磁性纳米颗粒,其在交变电场作用下振荡,由于垂直方向上方向相反的库仑力和磁力作用,颗粒粒径小时被束缚在反应区中,当粒径超过临界尺度时,磁力吸引颗粒迅速脱离反应区进入非反应区,从而达到控制颗粒粒径的目的。本发明方法的优点是:可以精确地控制磁性纳米颗粒的粒径;适合在科学研究和工业生产中精确控制磁性纳米颗粒粒径的大小。

    一种铁磁性金属纳米颗粒液相生长过程中颗粒粒径的控制方法

    公开(公告)号:CN100372637C

    公开(公告)日:2008-03-05

    申请号:CN200610011278.4

    申请日:2006-01-25

    Abstract: 本发明提供了一种采用液相法生长铁磁性金属纳米颗粒过程中控制颗粒粒径的方法,属于磁性纳米材料技术领域。工艺步骤为:采用液相法,将反应物分成A、B两部分,A置于反应区,而与A不互溶的溶液E置于非反应区,反应区与非反应区将自动分层。在水平施加交变电场和垂直施加静电场和梯度磁场后,加入B开始生成磁性纳米颗粒,其在交变电场作用下振荡,由于垂直方向上方向相反的库仑力和磁力作用,颗粒粒径小时被束缚在反应区中,当粒径超过临界尺度时,磁力吸引颗粒迅速脱离反应区进入非反应区,从而达到控制颗粒粒径的目的。本发明方法的优点是:可以精确地控制磁性纳米颗粒的粒径;适合在科学研究和工业生产中精确控制磁性纳米颗粒粒径的大小。

Patent Agency Ranking