-
公开(公告)号:CN112862015A
公开(公告)日:2021-05-28
申请号:CN202110356414.8
申请日:2021-04-01
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于超图神经网络的论文分类方法及系统。该方法包括:获取向量数据X=[x1,x2,…,x|v|];其中,向量数据为目标论文的特征向量,|v|为目标论文作者的数量,x1,x2,x|v|表示目标论文的不同作者;将向量数据输入经训练的超图神经网络模型,得到分类结果,分类结果表示目标论文的类别;其中,超图神经网络模型包括依次连接的若干超图卷积‑池化网络模块和分类模块,超图卷积‑池化网络模块包括超图卷积层和与超图卷积层的输出连接的池化层;超图神经网络模型的训练样本为特征向量样本,标签为论文样本的类别,特征向量样本为由论文样本的作者构成的向量数据。本发明提高了论文分类的效率,同时保障了准确度。
-
公开(公告)号:CN115238075B
公开(公告)日:2023-04-07
申请号:CN202210912341.0
申请日:2022-07-30
Applicant: 北京理工大学
Abstract: 本发明公开了基于超图池化的文本情感分类方法,将文本数据转化为文本超图,然后输入到超图模型中;超图模型设置有三个模块,每个模块均分为卷积层、池化层和读出层,且前一个模块输出的超图数据输入到后一个模块继续计算;超图卷积层通过超图卷积更新节点特征;超图池化层通过多层感知器线性变换得到节点重要度评分,并通过PageRank算法得到超边重要度评分,然后根据综合得分过滤节点;超图读出层读取每个维度节点特征的最大值和平均值,并进行求和;最后,将三个模块的读出层数值求和得到最终的文本超图特征表示,然后送入线性层进行文本情感分类。本发明采用上述文本情感分类方法,能够得到准确的文本情感信息,在情感分类任务中得到良好的表现效果。
-
公开(公告)号:CN115238075A
公开(公告)日:2022-10-25
申请号:CN202210912341.0
申请日:2022-07-30
Applicant: 北京理工大学
Abstract: 本发明公开了基于超图池化的文本情感分类方法,将文本数据转化为文本超图,然后输入到超图模型中;超图模型设置有三个模块,每个模块均分为卷积层、池化层和读出层,且前一个模块输出的超图数据输入到后一个模块继续计算;超图卷积层通过超图卷积更新节点特征;超图池化层通过多层感知器线性变换得到节点重要度评分,并通过PageRank算法得到超边重要度评分,然后根据综合得分过滤节点;超图读出层读取每个维度节点特征的最大值和平均值,并进行求和;最后,将三个模块的读出层数值求和得到最终的文本超图特征表示,然后送入线性层进行文本情感分类。本发明采用上述文本情感分类方法,能够得到准确的文本情感信息,在情感分类任务中得到良好的表现效果。
-
-