-
公开(公告)号:CN109784372A
公开(公告)日:2019-05-21
申请号:CN201811544116.6
申请日:2018-12-17
Applicant: 北京理工大学
Abstract: 本发明提供一种基于卷积神经网络的目标分类方法,不采用卷积核直接遍历目标图像,而是采用与输出特征图像大小相同的滑窗按行再按列遍历整幅目标图像,从而提取出目标图像的对应的像素点作为子图像,再将卷积核的各特征参数分别与各子图像对应相乘得到中间图像,最后将中间图像的和值作为输出特征图像,在获取与现有卷积实现方式相同的卷积结果的前提条件下,将卷积运算拆分成单个点的乘加运算,能够最大程度的减少卷积实现过程中,微处理器读取数据时地址跳变的次数,进而大大提高硬件处理的效率。
-
公开(公告)号:CN109784372B
公开(公告)日:2020-11-13
申请号:CN201811544116.6
申请日:2018-12-17
Applicant: 北京理工大学
Abstract: 本发明提供一种基于卷积神经网络的目标分类方法,不采用卷积核直接遍历目标图像,而是采用与输出特征图像大小相同的滑窗按行再按列遍历整幅目标图像,从而提取出目标图像的对应的像素点作为子图像,再将卷积核的各特征参数分别与各子图像对应相乘得到中间图像,最后将中间图像的和值作为输出特征图像,在获取与现有卷积实现方式相同的卷积结果的前提条件下,将卷积运算拆分成单个点的乘加运算,能够最大程度的减少卷积实现过程中,微处理器读取数据时地址跳变的次数,进而大大提高硬件处理的效率。
-