-
公开(公告)号:CN111748761B
公开(公告)日:2022-04-22
申请号:CN202010525583.5
申请日:2020-06-10
Abstract: 本发明公开了一种高韧性低导热的金属基‑陶瓷复合涂层及其制备方法和应用,其制备方法包括,将喷涂在金属基体表面的金属基‑陶瓷复合涂层进行热处理,在金属基非晶合金与陶瓷相之间形成界面层,从而在增加界面层热阻的基础上增强其韧性。本发明通过优化热处理工艺,能有效降低复合涂层的导热,增加其韧性;其制备方法简单,仅通过简单的热处理即能在提升金属基‑陶瓷复合涂层的隔热效果的基础上增强其韧性,所制得的高韧性低导热金属基‑陶瓷复合涂层综合性能良好,在隔热防护领域应用前景广阔。
-
公开(公告)号:CN105256260A
公开(公告)日:2016-01-20
申请号:CN201510830890.3
申请日:2015-11-25
Applicant: 北京理工大学
Abstract: 本发明具体涉及一种通过添加第二相非晶颗粒提高铝基非晶合金强度的方法,属于非晶材料领域。所述方法步骤:将Al、Ni、Er、Co和La金属块体配成原始材料,在真空下,氩气作为保护气体,进行合金化熔炼,得到Al-Ni-Er-Co-La非晶合金的母合金锭;将得到的母合金锭进行雾化,筛选得到粒径为20~50μm的球形铝基非晶合金粉末;将Fe、Si和B或Zr、Cu和Ti或Ti、Fe和Ni粉末装入球磨罐,在Ar气氛的手套箱中向球磨罐中注入甲苯,封罐后从手套箱中取出进行球磨,得到第二相非晶颗粒粉末;将得到的铝基非晶合金粉末和第二相非晶颗粒粉末进行球磨混合后,装入硬质合金模具中,利用放电等离子烧结技术进行烧结,得到第二相非晶颗粒增强强度的铝基非晶合金。
-
公开(公告)号:CN102618807B
公开(公告)日:2014-07-23
申请号:CN201110450295.9
申请日:2011-12-29
Applicant: 北京理工大学
Abstract: 本发明公开了一种铝基非晶/纳米晶复合材料及其制备方法,属于非晶材料领域。所述材料中Al、Cu和Ti金属元素的原子百分比依次为65∶16.5∶18.5,所述材料具有非晶/纳米晶复合结构,其中非晶体积分数为70~90%,纳米晶体积分数为30~10%。所述材料的制备方法步骤如下:(1)通过机械合金化获得非晶合金粉末;(2)通过放电等离子烧结获得非晶/纳米晶复合材料。所述非晶/纳米晶复合材料相对密度高,压缩强度大。所述制备方法通过机械合金化球磨Al-Cu-Ti粉末所得的非晶粉末的非晶化程度高;在放电等离子烧结中采用硬质合金钢模具代替传统的石墨模具,提高了烧结的压强,有利于提高烧结试样的相对密度。
-
公开(公告)号:CN111763904A
公开(公告)日:2020-10-13
申请号:CN202010553534.2
申请日:2020-06-17
Abstract: 本发明涉及一种高熵合金粉末、高电阻涂层及其制备方法和应用,包含按质量百分含量的以下成分:镍17~25%,钴14~25%,铬15~20%,锰13~20%,铁为余量,所述高熵合金粉末用于高电阻加热涂层的制备。本发明提供的高电阻涂层材料使涂层获得单一相结构的同时,提高涂层电阻,实现加热效率的提升,同时保证服役可靠性,具有广阔的应用前景。
-
公开(公告)号:CN111748761A
公开(公告)日:2020-10-09
申请号:CN202010525583.5
申请日:2020-06-10
Abstract: 本发明公开了一种高韧性低导热的金属基-陶瓷复合涂层及其制备方法和应用,其制备方法包括,将喷涂在金属基体表面的金属基-陶瓷复合涂层进行热处理,在金属基非晶合金与陶瓷相之间形成界面层,从而在增加界面层热阻的基础上增强其韧性。本发明通过优化热处理工艺,能有效降低复合涂层的导热,增加其韧性;其制备方法简单,仅通过简单的热处理即能在提升金属基-陶瓷复合涂层的隔热效果的基础上增强其韧性,所制得的高韧性低导热金属基-陶瓷复合涂层综合性能良好,在隔热防护领域应用前景广阔。
-
公开(公告)号:CN105154702B
公开(公告)日:2017-04-12
申请号:CN201510683074.4
申请日:2015-10-20
Applicant: 北京理工大学
Abstract: 本发明涉及一种铝基非晶/高熵合金复合材料及制备方法,属于金属复合材料领域。所述复合材料密度较低,抗压强度高,并具有一定的变形能力。所述方法步骤:将Al、Cu和Ti或Al、Fe和Ti或Al、Ni和Ti的金属粉末装入球磨罐,在Ar气氛的手套箱中向球磨罐中注入甲苯,封罐后从手套箱中取出,进行球磨,得到铝基非晶粉末;将Al、Co、Cr、Fe和Ni金属块体配成原始材料,在真空下,氩气作为保护气体,进行合金化熔炼,得到AlCoCrFeNi高熵合金的母合金锭;将得到的母合金锭进行雾化,筛选得到粒径为20~100μm的球形高熵合金粉末;将得到的铝基非晶合金粉末和高熵合金粉末进行球磨混合后,装入硬质合金模具中进行烧结,得到所述铝基非晶/高熵合金复合材料。
-
公开(公告)号:CN105256260B
公开(公告)日:2017-03-22
申请号:CN201510830890.3
申请日:2015-11-25
Applicant: 北京理工大学
Abstract: 本发明具体涉及一种通过添加第二相非晶颗粒提高铝基非晶合金强度的方法,属于非晶材料领域。所述方法步骤:将Al、Ni、Er、Co和La金属块体配成原始材料,在真空下,氩气作为保护气体,进行合金化熔炼,得到Al-Ni-Er-Co-La非晶合金的母合金锭;将得到的母合金锭进行雾化,筛选得到粒径为20~50μm的球形铝基非晶合金粉末;将Fe、Si和B或Zr、Cu和Ti或Ti、Fe和Ni粉末装入球磨罐,在Ar气氛的手套箱中向球磨罐中注入甲苯,封罐后从手套箱中取出进行球磨,得到第二相非晶颗粒粉末;将得到的铝基非晶合金粉末和第二相非晶颗粒粉末进行球磨混合后,装入硬质合金模具中,利用放电等离子烧结技术进行烧结,得到第二相非晶颗粒增强强度的铝基非晶合金。
-
公开(公告)号:CN102816913A
公开(公告)日:2012-12-12
申请号:CN201210324229.1
申请日:2012-09-04
Applicant: 北京理工大学
Abstract: 本发明公开了一种利用超音速颗粒轰击技术提高非晶合金塑性的方法,属于非晶材料领域。所述方法步骤如下:(1)选取洁净的Ti基或者Zr基非晶合金试样;(2)将非晶合金试样固定在超音速动力喷涂设备上;(3)利用超音速动力喷涂设备,在压缩气体压力高于两倍音速即高于620KPa,轰击温度为100℃~200℃条件下,采用平均粒径为30~50μm的Al2O3或SiC颗粒轰击非晶合金试样表面,持续时间2.5~5s,即得到塑性提高的非晶合金试样。所述方法最高能够使非晶合金块体塑性提高66%,且非晶合金表层未发生晶化;还具有操作简单、耗费时间少、成本低、重复性好的优点。
-
公开(公告)号:CN102618807A
公开(公告)日:2012-08-01
申请号:CN201110450295.9
申请日:2011-12-29
Applicant: 北京理工大学
Abstract: 本发明公开了一种铝基非晶/纳米晶复合材料及其制备方法,属于非晶材料领域。所述材料中Al、Cu和Ti金属元素的原子百分比依次为65∶16.5∶18.5,所述材料具有非晶/纳米晶复合结构,其中非晶体积分数为70~90%,纳米晶体积分数为30~10%。所述材料的制备方法步骤如下:(1)通过机械合金化获得非晶合金粉末;(2)通过放电等离子烧结获得非晶/纳米晶复合材料。所述非晶/纳米晶复合材料相对密度高,压缩强度大。所述制备方法通过机械合金化球磨Al-Cu-Ti粉末所得的非晶粉末的非晶化程度高;在放电等离子烧结中采用硬质合金钢模具代替传统的石墨模具,提高了烧结的压强,有利于提高烧结试样的相对密度。
-
公开(公告)号:CN102816913B
公开(公告)日:2013-11-13
申请号:CN201210324229.1
申请日:2012-09-04
Applicant: 北京理工大学
IPC: C23C14/34
Abstract: 本发明公开了一种利用超音速颗粒轰击技术提高非晶合金塑性的方法,属于非晶材料领域。所述方法步骤如下:(1)选取洁净的Ti基或者Zr基非晶合金试样;(2)将非晶合金试样固定在超音速动力喷涂设备上;(3)利用超音速动力喷涂设备,在压缩气体压力高于620KPa,轰击温度为100℃~200℃条件下,采用平均粒径为30~50μm的Al2O3或SiC颗粒轰击非晶合金试样表面,持续时间2.5~5s,即得到塑性提高的非晶合金试样。所述方法最高能够使非晶合金块体塑性提高66%,且非晶合金表层未发生晶化;还具有操作简单、耗费时间少、成本低、重复性好的优点。
-
-
-
-
-
-
-
-
-