-
公开(公告)号:CN102855486A
公开(公告)日:2013-01-02
申请号:CN201210297337.4
申请日:2012-08-20
Applicant: 北京理工大学
Abstract: 本发明公开了一种广义图像目标检测方法,属于图像分析处理技术领域。本发明方法结合图像特征提取与学习过程中的样例方法和多实例方法的优势,在此基础上扩展成为多核多实例相似度特征(MKMIS),能够为同一类中具有不同外观的目标进行很好的描述,并能接受一定范围内的配准误差;其次,针对MKMIS特征的弱势,即图像特征维度过高、计算量大的情况,在分类器学习过程中,使用推广的前向特征选择方法,使其能够满足任意条件的损失和约束函数,使分类器可以选择到少量并且有效的图像特征,当进行在线目标检测时,只计算和使用这些特征即可,从而加快目标检测的速度。
-
公开(公告)号:CN102855486B
公开(公告)日:2015-02-11
申请号:CN201210297337.4
申请日:2012-08-20
Applicant: 北京理工大学
Abstract: 本发明公开了一种广义图像目标检测方法,属于图像分析处理技术领域。本发明方法结合图像特征提取与学习过程中的样例方法和多实例方法的优势,在此基础上扩展成为多核多实例相似度特征(MKMIS),能够为同一类中具有不同外观的目标进行很好的描述,并能接受一定范围内的配准误差;其次,针对MKMIS特征的弱势,即图像特征维度过高、计算量大的情况,在分类器学习过程中,使用推广的前向特征选择方法,使其能够满足任意条件的损失和约束函数,使分类器可以选择到少量并且有效的图像特征,当进行在线目标检测时,只计算和使用这些特征即可,从而加快目标检测的速度。
-