基于最小二乘支持向量机在线预测的传感器故障诊断方法

    公开(公告)号:CN102324034A

    公开(公告)日:2012-01-18

    申请号:CN201110137724.7

    申请日:2011-05-25

    Abstract: 本发明公开了一种基于最小二乘支持向量机在线预测的传感器故障诊断方法。该方法建立了一个最小二乘支持向量机在线预测模型,然后在线采集传感器测量数据作为最小二乘支持向量机在线预测模型的输入样本,实现该预测模型一边在线训练一边实时预测出传感器在下一时刻的输出值。通过比较传感器的预测值与实际输出值产生的残差来检测传感器故障是否发生。在有故障发生时,通过最小二乘方法对残差序列进行一元线性回归,实现传感器偏差与漂移故障的辨识,进而能够更有效地采取措施对传感器输出进行实时补偿。本发明能快速准确地实现传感器在线故障诊断,特别适用于传感器偏差故障与漂移故障诊断。

    基于最小二乘支持向量机在线预测的传感器故障诊断方法

    公开(公告)号:CN102324034B

    公开(公告)日:2012-08-15

    申请号:CN201110137724.7

    申请日:2011-05-25

    Abstract: 本发明公开了一种基于最小二乘支持向量机在线预测的传感器故障诊断方法。该方法建立了一个最小二乘支持向量机在线预测模型,然后在线采集传感器测量数据作为最小二乘支持向量机在线预测模型的输入样本,实现该预测模型一边在线训练一边实时预测出传感器在下一时刻的输出值。通过比较传感器的预测值与实际输出值产生的残差来检测传感器故障是否发生。在有故障发生时,通过最小二乘方法对残差序列进行一元线性回归,实现传感器偏差与漂移故障的辨识,进而能够更有效地采取措施对传感器输出进行实时补偿。本发明能快速准确地实现传感器在线故障诊断,特别适用于传感器偏差故障与漂移故障诊断。

Patent Agency Ranking