一种求解多商品流最大并发流的流偏差算法

    公开(公告)号:CN109120534A

    公开(公告)日:2019-01-01

    申请号:CN201810965570.2

    申请日:2018-08-23

    Abstract: 本发明涉及一种求解多商品流最大并发流的流偏差算法,属于多商品流问题及通信网络路由技术领域。核心思想是先以较大的步长进行迭代,在接近最优解时,采用慢速迭代来保证算法精确度。包括:1)建立问题模型;2)初始化问题模型;3)初始化多商品流变量2和3、快速迭代指示变量、多商品流流量及内循环迭代次数;4)均分平衡已有的多商品流流量,包括A)求解最小代价流及生成多商品流;B)求解平衡后的多商品流;C)多商品流的均衡度满足退出条件跳至5)否则跳A);5).判断是否已得到满足精度要求的解,若是结束本算法,否则跳至3)。本发明能在不损失计算精度条件下,显著降低运算复杂度,快速得到满足要求的路由。

    一种用于任意客户端退出问题的模型对比联邦学习方法

    公开(公告)号:CN118821976A

    公开(公告)日:2024-10-22

    申请号:CN202410950911.4

    申请日:2024-07-16

    Abstract: 本发明公开的一种用于任意客户端退出问题的模型对比联邦学习方法,属于边缘智能计算技术领域。本发明实现方法为:在联邦学习本地训练阶段针对活跃客户端,构建加入正则项的模型对比模块,减小全局目标向局部目标的偏移;针对退出客户端,采用历史更新延用策略,保证退出客户端对全局更新的贡献度。在全局模型更新阶段,采用加权聚合模块,先对本轮次的客户端的更新量按贡献度加权聚合,通过给予普遍性数据更大的权重,防止错误数据或个性化数据对模型性能的负面影响;利用该加权聚合模块对该轮次局部更新的加权聚合量与上一轮次全局更新加权聚合,融合历史全局更新量,提升全局模型收敛速度,增强全局模型对数据异质性的鲁棒性。

    一种求解多商品流最大并发流的流偏差方法

    公开(公告)号:CN109120534B

    公开(公告)日:2020-07-28

    申请号:CN201810965570.2

    申请日:2018-08-23

    Abstract: 本发明涉及一种求解多商品流最大并发流的流偏差算法,属于多商品流问题及通信网络路由技术领域。核心思想是先以较大的步长进行迭代,在接近最优解时,采用慢速迭代来保证算法精确度。包括:1)建立问题模型;2)初始化问题模型;3)初始化多商品流变量2和3、快速迭代指示变量、多商品流流量及内循环迭代次数;4)均分平衡已有的多商品流流量,包括A)求解最小代价流及生成多商品流;B)求解平衡后的多商品流;C)多商品流的均衡度满足退出条件跳至5)否则跳A);5).判断是否已得到满足精度要求的解,若是结束本算法,否则跳至3)。本发明能在不损失计算精度条件下,显著降低运算复杂度,快速得到满足要求的路由。

    一种用于边缘设备的神经网络动态早退加速推理方法

    公开(公告)号:CN116776982A

    公开(公告)日:2023-09-19

    申请号:CN202310808099.7

    申请日:2023-07-03

    Abstract: 本发明公开的一种用于边缘设备的神经网络动态早退加速推理方法,属于边缘计算领域。使用异构退出头结构,提高模型的特征提取能力,实现更高的模型精度、更快的推理速度和更低的模型运算复杂度;使用两阶段训练策略训练基于异构退出头的动态早退模型,更充分地发挥退出头的潜能,进一步提高模型精度,降低模型运算复杂度;使用动态推理方法,动态执行部分网络,节省计算资源;同时根据输入数据的复杂性动态选择模型输出路径,以适应不同场景,实现精度‑效率之间的权衡。本发明适用于边缘计算领域,提高模型精度,加快推理速度并且降低模型运算复杂度,为基于复杂模型的智能应用在边缘设备的部署提供支撑。

Patent Agency Ranking