-
公开(公告)号:CN116110588B
公开(公告)日:2024-04-26
申请号:CN202211452111.7
申请日:2022-11-21
Applicant: 北京理工大学
IPC: G16H50/50 , G06F18/214 , G06N3/0464
Abstract: 本发明涉及一种基于动态邻接矩阵和时空注意力的医学时间序列预测方法,属于大数据挖掘和医学人工智能数据预测技术领域。该方法对于疾病暴露人口数医学时间序列历史数据,构建静态空间邻接矩阵捕获空间外部数据,构建动态时间邻接矩阵挖掘疾病暴露人口数在时间维度上的关联特征,利用时空注意力机制融合静态空间邻接矩阵和动态时间邻接矩阵,采用图卷积神经网络和门控循环单元框架来预测未来时间步的疾病暴露人口数。本发明引入空间外部数据,学习动态时间邻接矩阵,引入时空注意力机制,能够捕获发病地区之间空间相关性,疾病暴露人口数在时间维度上的关联特征,实现时空信息相关性的融合,从提高医学时间序列预测方法的性能。
-
公开(公告)号:CN116110588A
公开(公告)日:2023-05-12
申请号:CN202211452111.7
申请日:2022-11-21
Applicant: 北京理工大学
IPC: G16H50/50 , G06F18/214 , G06N3/0464
Abstract: 本发明涉及一种基于动态邻接矩阵和时空注意力的医学时间序列预测方法,属于大数据挖掘和医学人工智能数据预测技术领域。该方法对于疾病暴露人口数医学时间序列历史数据,构建静态空间邻接矩阵捕获空间外部数据,构建动态时间邻接矩阵挖掘疾病暴露人口数在时间维度上的关联特征,利用时空注意力机制融合静态空间邻接矩阵和动态时间邻接矩阵,采用图卷积神经网络和门控循环单元框架来预测未来时间步的疾病暴露人口数。本发明引入空间外部数据,学习动态时间邻接矩阵,引入时空注意力机制,能够捕获发病地区之间空间相关性,疾病暴露人口数在时间维度上的关联特征,实现时空信息相关性的融合,从提高医学时间序列预测方法的性能。
-