-
公开(公告)号:CN107393542B
公开(公告)日:2020-05-19
申请号:CN201710509545.9
申请日:2017-06-28
Applicant: 北京林业大学
Abstract: 本发明公开了一种基于双通道神经网络的鸟类物种识别方法,包括:采集已知种类的鸟鸣声信号并采用滤波、预加重、分割处理,得到预处理鸟鸣声信号;基于线性调频小波变换生成信号语图;截取符合预设帧长范围的鸟鸣声信号作为鸟鸣声时域信号;将信号语图作为第一通道的输入信号、鸟鸣声时域信号作为第二通道的输入信号、鸟鸣声信号对应的鸟类物种作为识别结果对构建的初步识别模型进行训练得到鸟类物种识别模型;将待识别的鸟鸣声信号经过同样处理得到的信号代入鸟类物种识别模型中进行识别,得到识别结果。所述基于双通道神经网络的鸟类物种识别方法充分利用鸣声信号的时域特征和时频特征,能够提高鸟类物种识别的效率和准确性。
-
公开(公告)号:CN107393542A
公开(公告)日:2017-11-24
申请号:CN201710509545.9
申请日:2017-06-28
Applicant: 北京林业大学
Abstract: 本发明公开了一种基于双通道神经网络的鸟类物种识别方法,包括:采集已知种类的鸟鸣声信号并采用滤波、预加重、分割处理,得到预处理鸟鸣声信号;基于线性调频小波变换生成信号语图;截取符合预设帧长范围的鸟鸣声信号作为鸟鸣声时域信号;将信号语图作为第一通道的输入信号、鸟鸣声时域信号作为第二通道的输入信号、鸟鸣声信号对应的鸟类物种作为识别结果对构建的初步识别模型进行训练得到鸟类物种识别模型;将待识别的鸟鸣声信号经过同样处理得到的信号代入鸟类物种识别模型中进行识别,得到识别结果。所述基于双通道神经网络的鸟类物种识别方法充分利用鸣声信号的时域特征和时频特征,能够提高鸟类物种识别的效率和准确性。
-